Publication:
Predicting opioid consumption after surgical discharge: a multinational derivation and validation study using a foundation model

dc.contributor.authorPeters L.
dc.contributor.authorGaborit L.
dc.contributor.authorXu W.
dc.contributor.authorKalyanasundaram K.
dc.contributor.authorBasam A.
dc.contributor.authorPark M.
dc.contributor.authorWells C.
dc.contributor.authorMcLean K. A.
dc.contributor.authorSchamberg G.
dc.contributor.authorO’Grady G.
dc.contributor.authoret al.
dc.date.accessioned2025-10-15T21:36:47Z
dc.date.issued2025-12-01
dc.description.abstractOpioids are frequently overprescribed after surgery. We applied a tabular foundation model to predict the risk of post-discharge opioid consumption. The model was trained and internally validated on an 80:20 training/test split of the ‘Opioid PrEscRiptions and usage After Surgery’ (ACTRN12621001451897p) study cohort, including adult patients undergoing general, orthopaedic, gynaecological and urological operations (n = 4267), with external validation in a distinct cohort of patients discharged after general surgical procedures (n = 826). The area under the receiver operator curve was 0.84 (95% confidence interval [CI] 0.81–0.88) at internal testing and 0.77 (95% CI 0.74–0.80) at external validation. Brier scores were 0.13 (95% CI 0.12–0.14) and 0.19 (95% CI 0.17–0.2). Patients with a <50% predicted risk of opioid consumption consumed a median of 0 oral morphine equivalents in the first week after surgery. Applying this model would reduce opioid prescriptions by 4.5% globally, and counterfactual modelling suggests without increasing time in severe pain (−4.3%, 95% CI −17.7 to 8.6).
dc.identifier.citationPeters L., Gaborit L., Xu W., Kalyanasundaram K., Basam A., Park M., Wells C., McLean K. A., Schamberg G., O’Grady G., et al., "Predicting opioid consumption after surgical discharge: a multinational derivation and validation study using a foundation model", npj Digital Medicine, cilt.8, sa.1, 2025
dc.identifier.doi10.1038/s41746-025-01798-6
dc.identifier.issn2398-6352
dc.identifier.issue1
dc.identifier.pubmed40858986
dc.identifier.scopus105016701637
dc.identifier.urihttps://avesis.bezmialem.edu.tr/api/publication/d4026da2-ccb0-4137-887e-5aa7f78597df/file
dc.identifier.urihttps://hdl.handle.net/20.500.12645/41207
dc.identifier.volume8
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTıp
dc.subjectDahili Tıp Bilimleri
dc.subjectAile Hekimliği
dc.subjectBilgisayar Bilimleri
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectMühendislik ve Teknoloji
dc.subjectMedicine
dc.subjectInternal Medicine Sciences
dc.subjectFamily Medicine
dc.subjectComputer Sciences
dc.subjectHealth Sciences
dc.subjectFundamental Medical Sciences
dc.subjectBiostatistics and Medical Informatics
dc.subjectEngineering and Technology
dc.subjectSağlık Bakım Bilimleri ve Hizmetleri
dc.subjectMühendislik Bilişim ve Teknoloji (Eng)
dc.subjectKlinik Tıp (Med)
dc.subjectKlinik Tıp
dc.subjectBilgisayar Bilimi
dc.subjectTıp Genel & Dahili
dc.subjectTıbbi Bilişim
dc.subjectHealth Care Sciences & Services
dc.subjectEngineering Computing & Technology (Eng)
dc.subjectClinical Medicine (Med)
dc.subjectClinical Medicine
dc.subjectComputer Science
dc.subjectMedicine General & Internal
dc.subjectMedical Informatics
dc.subjectTıp (çeşitli)
dc.subjectBilgisayar Bilimi Uygulamaları
dc.subjectFizik Bilimleri
dc.subjectSağlık Bilgi Yönetimi
dc.subjectMedicine (miscellaneous)
dc.subjectHealth Informatics
dc.subjectComputer Science Applications
dc.subjectPhysical Sciences
dc.subjectHealth Information Management
dc.titlePredicting opioid consumption after surgical discharge: a multinational derivation and validation study using a foundation model
dc.typearticle
dspace.entity.typePublication
local.avesis.idd4026da2-ccb0-4137-887e-5aa7f78597df

Files