Publication: Predicting opioid consumption after surgical discharge: a multinational derivation and validation study using a foundation model
| dc.contributor.author | Peters L. | |
| dc.contributor.author | Gaborit L. | |
| dc.contributor.author | Xu W. | |
| dc.contributor.author | Kalyanasundaram K. | |
| dc.contributor.author | Basam A. | |
| dc.contributor.author | Park M. | |
| dc.contributor.author | Wells C. | |
| dc.contributor.author | McLean K. A. | |
| dc.contributor.author | Schamberg G. | |
| dc.contributor.author | O’Grady G. | |
| dc.contributor.author | et al. | |
| dc.date.accessioned | 2025-10-15T21:36:47Z | |
| dc.date.issued | 2025-12-01 | |
| dc.description.abstract | Opioids are frequently overprescribed after surgery. We applied a tabular foundation model to predict the risk of post-discharge opioid consumption. The model was trained and internally validated on an 80:20 training/test split of the ‘Opioid PrEscRiptions and usage After Surgery’ (ACTRN12621001451897p) study cohort, including adult patients undergoing general, orthopaedic, gynaecological and urological operations (n = 4267), with external validation in a distinct cohort of patients discharged after general surgical procedures (n = 826). The area under the receiver operator curve was 0.84 (95% confidence interval [CI] 0.81–0.88) at internal testing and 0.77 (95% CI 0.74–0.80) at external validation. Brier scores were 0.13 (95% CI 0.12–0.14) and 0.19 (95% CI 0.17–0.2). Patients with a <50% predicted risk of opioid consumption consumed a median of 0 oral morphine equivalents in the first week after surgery. Applying this model would reduce opioid prescriptions by 4.5% globally, and counterfactual modelling suggests without increasing time in severe pain (−4.3%, 95% CI −17.7 to 8.6). | |
| dc.identifier.citation | Peters L., Gaborit L., Xu W., Kalyanasundaram K., Basam A., Park M., Wells C., McLean K. A., Schamberg G., O’Grady G., et al., "Predicting opioid consumption after surgical discharge: a multinational derivation and validation study using a foundation model", npj Digital Medicine, cilt.8, sa.1, 2025 | |
| dc.identifier.doi | 10.1038/s41746-025-01798-6 | |
| dc.identifier.issn | 2398-6352 | |
| dc.identifier.issue | 1 | |
| dc.identifier.pubmed | 40858986 | |
| dc.identifier.scopus | 105016701637 | |
| dc.identifier.uri | https://avesis.bezmialem.edu.tr/api/publication/d4026da2-ccb0-4137-887e-5aa7f78597df/file | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12645/41207 | |
| dc.identifier.volume | 8 | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Tıp | |
| dc.subject | Dahili Tıp Bilimleri | |
| dc.subject | Aile Hekimliği | |
| dc.subject | Bilgisayar Bilimleri | |
| dc.subject | Sağlık Bilimleri | |
| dc.subject | Temel Tıp Bilimleri | |
| dc.subject | Biyoistatistik ve Tıp Bilişimi | |
| dc.subject | Mühendislik ve Teknoloji | |
| dc.subject | Medicine | |
| dc.subject | Internal Medicine Sciences | |
| dc.subject | Family Medicine | |
| dc.subject | Computer Sciences | |
| dc.subject | Health Sciences | |
| dc.subject | Fundamental Medical Sciences | |
| dc.subject | Biostatistics and Medical Informatics | |
| dc.subject | Engineering and Technology | |
| dc.subject | Sağlık Bakım Bilimleri ve Hizmetleri | |
| dc.subject | Mühendislik Bilişim ve Teknoloji (Eng) | |
| dc.subject | Klinik Tıp (Med) | |
| dc.subject | Klinik Tıp | |
| dc.subject | Bilgisayar Bilimi | |
| dc.subject | Tıp Genel & Dahili | |
| dc.subject | Tıbbi Bilişim | |
| dc.subject | Health Care Sciences & Services | |
| dc.subject | Engineering Computing & Technology (Eng) | |
| dc.subject | Clinical Medicine (Med) | |
| dc.subject | Clinical Medicine | |
| dc.subject | Computer Science | |
| dc.subject | Medicine General & Internal | |
| dc.subject | Medical Informatics | |
| dc.subject | Tıp (çeşitli) | |
| dc.subject | Bilgisayar Bilimi Uygulamaları | |
| dc.subject | Fizik Bilimleri | |
| dc.subject | Sağlık Bilgi Yönetimi | |
| dc.subject | Medicine (miscellaneous) | |
| dc.subject | Health Informatics | |
| dc.subject | Computer Science Applications | |
| dc.subject | Physical Sciences | |
| dc.subject | Health Information Management | |
| dc.title | Predicting opioid consumption after surgical discharge: a multinational derivation and validation study using a foundation model | |
| dc.type | article | |
| dspace.entity.type | Publication | |
| local.avesis.id | d4026da2-ccb0-4137-887e-5aa7f78597df |