Publication:
A series of quinazolin-4(3H)-one-morpholine hybrids as anti-lung-cancer agents: Synthesis, molecular docking, molecular dynamics, ADME prediction and biological activity studies

Placeholder

Organizational Units

Program

Authors

Authors

Tokalı F. S.
ŞENOL H.
ATEŞOĞLU Ş.
AKBAŞ F.

Advisor

Language

Publisher

Journal Title

Journal ISSN

Volume Title

Abstract

In this study, we synthesized 15 novel quinazoline-morpholinobenzylideneamino hybrid compounds from methyl anthranilate and we assessed their cytotoxicity via in vitro assays against A549 and BEAS-2B cell lines. Molecular docking studies were conducted to evaluate the protein-ligand interactions and inhibition mechanisms on nine different molecular targets, while molecular dynamics (MD) simulations were carried out to assess the stability of the best docked ligand–protein complexes. Additionally, ADME prediction was carried out to determine physicochemical parameters and drug likeness. According to the cytotoxicity assays, compound 1 (IC50 = 2.83 μM) was found to be the most active inhibitor against A549 cells. While the selectivity index (SI) of compound 1 is 29, the SI of the reference drugs paclitaxel and sorafenib, used in this study, are 2.40 and 4.92, respectively. Among the hybrid compounds, 1 has the best docking scores against VEGFR1 (−11.744 kcal/mol), VEGFR2 (−12.407 kcal/mol) and EGFR (−10.359 kcal/mol). During MD simulations, compound 1 consistently exhibited strong hydrogen bond interactions with the active sites of VEGFR1 and 2, and these interactions were maintained for more than 90% of the simulation time. Additionally, the RMSD and RMSF values of the ligand–protein complexes exhibited high stability at their minimum levels around 1–2 Å. In conclusion, these findings suggest that compound 1 may be a potent and selective inhibitor candidate for lung cancer treatment and inhibition of VEGFR2, especially.

Description

Source:

Keywords:

Citation

Tokalı F. S., ŞENOL H., ATEŞOĞLU Ş., AKBAŞ F., "A series of quinazolin-4(3H)-one-morpholine hybrids as anti-lung-cancer agents: Synthesis, molecular docking, molecular dynamics, ADME prediction and biological activity studies", Chemical Biology and Drug Design, cilt.104, sa.1, 2024

Endorsement

Review

Supplemented By

Referenced By

3

Views

0

Downloads

View PlumX Details


Sustainable Development Goals