Publication:
Machine learning based CAGIB score predicts in-hospital mortality of cirrhotic patients with acute gastrointestinal bleeding

dc.contributor.authorBai Z.
dc.contributor.authorLin S.
dc.contributor.authorSun M.
dc.contributor.authorYuan S.
dc.contributor.authorMarcondes M. B.
dc.contributor.authorMa D.
dc.contributor.authorZhu Q.
dc.contributor.authorLi Y.
dc.contributor.authorHe Y.
dc.contributor.authorPhilips C. A.
dc.contributor.authoret al.
dc.date.accessioned2025-09-03T21:50:42Z
dc.date.issued2025-12-01
dc.description.abstractAcute gastrointestinal bleeding (AGIB) is a potentially lethal complication in cirrhosis. In this prospective international multi-center study, the performance of CAGIB score for predicting the risk of in-hospital death in 2467 cirrhotic patients with AGIB was validated. Machine learning (ML) models were established based on CAGIB components, and their area under curves (AUCs) were calculated and compared. Gray zone approach was employed to further stratify the risk of death. In training cohort, the AUC of CAGIB score was 0.789. Among the ML models, the least square support vector machine regression (LS-SVMR) model had the best predictive performance (AUC = 0.986). Patients were further divided into low- (LS-SVMR score 0.160) groups with in-hospital mortality of 0.38%, 2.22%, and 64.37%, respectively. Statistical results were retained in validation cohort. LS-SVMR model has an excellent predictive performance for in-hospital death in cirrhotic patients with AGIB (ClinicalTrials.gov; NCT04662918). (Figure presented.)
dc.identifier.citationBai Z., Lin S., Sun M., Yuan S., Marcondes M. B., Ma D., Zhu Q., Li Y., He Y., Philips C. A., et al., "Machine learning based CAGIB score predicts in-hospital mortality of cirrhotic patients with acute gastrointestinal bleeding", npj Digital Medicine, cilt.8, sa.1, 2025
dc.identifier.doi10.1038/s41746-025-01883-w
dc.identifier.issn2398-6352
dc.identifier.issue1
dc.identifier.pubmed40745090
dc.identifier.scopus105012480512
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105012480512&origin=inward
dc.identifier.urihttps://hdl.handle.net/20.500.12645/41139
dc.identifier.volume8
dc.identifier.wosWOS:001542038800002
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTıp
dc.subjectDahili Tıp Bilimleri
dc.subjectAile Hekimliği
dc.subjectBilgisayar Bilimleri
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectMühendislik ve Teknoloji
dc.subjectMedicine
dc.subjectInternal Medicine Sciences
dc.subjectFamily Medicine
dc.subjectComputer Sciences
dc.subjectHealth Sciences
dc.subjectFundamental Medical Sciences
dc.subjectBiostatistics and Medical Informatics
dc.subjectEngineering and Technology
dc.subjectSağlık Bakım Bilimleri ve Hizmetleri
dc.subjectMühendislik Bilişim ve Teknoloji (Eng)
dc.subjectKlinik Tıp (Med)
dc.subjectKlinik Tıp
dc.subjectBilgisayar Bilimi
dc.subjectTıp Genel & Dahili
dc.subjectTıbbi Bilişim
dc.subjectHealth Care Sciences & Services
dc.subjectEngineering Computing & Technology (Eng)
dc.subjectClinical Medicine (Med)
dc.subjectClinical Medicine
dc.subjectComputer Science
dc.subjectMedicine General & Internal
dc.subjectMedical Informatics
dc.subjectTıp (çeşitli)
dc.subjectBilgisayar Bilimi Uygulamaları
dc.subjectFizik Bilimleri
dc.subjectSağlık Bilgi Yönetimi
dc.subjectMedicine (miscellaneous)
dc.subjectHealth Informatics
dc.subjectComputer Science Applications
dc.subjectPhysical Sciences
dc.subjectHealth Information Management
dc.titleMachine learning based CAGIB score predicts in-hospital mortality of cirrhotic patients with acute gastrointestinal bleeding
dc.typearticle
dspace.entity.typePublication
local.avesis.id5201ed0f-3fd7-44f8-8104-28693b348d39

Files