Publication:
Synthesis and characterization of L-carnosine coated iron oxide nanoparticles

dc.contributor.authorDurmus, ZEHRA
dc.contributor.authorKavas, H.
dc.contributor.authorBaykal, A.
dc.contributor.authorSOZERI, H.
dc.contributor.authorAlpsoy, L.
dc.contributor.authorCelik, S. U.
dc.contributor.authorToprak, M. S.
dc.date.accessioned2020-10-29T13:01:34Z
dc.date.available2020-10-29T13:01:34Z
dc.date.issued2011-02-03T00:00:00Z
dc.description.abstractL-Carnosine coated iron oxide nanoparticles (CCIO NPs) have been prepared via co-precipitation of iron oxide in the presence of L-carnosine. Crystalline phase was identified as magnetite with an average crystallite size of 8 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM by log-normal fitting was similar to 11 nm. FTIR analysis showed that the binding of carnosine onto the surface of iron oxide is through unidentate linkage of carboxyl group. CCIO NPs showed superparamagnetic charactersitic at room temperature. The magnetic core size of superparamagnetic CCIO NPs was found slightly smaller than the size obtained from TEM, due to the presence of magnetically dead layer. Magnetization measurements revealed that L-carnosine iron oxide composite has immeasurable coercivity and remanence with absence of hysteritic behavior, which implies superparamagnetic behavior at room temperature. The low value of saturation magnetization compared to the bulk magnetite has been explained by spin canting. LDH activity tests showed slight cytotoxicity of high dose of CCIO NPs. The ac conductivity of CCIO NPs was found to be greater than that of carnosine and the effective conduction mechanism was found as correlated barrier hopping (CBH). dc activation energy of the product at around room temperature was measured as 0.312 eV which was in good agreement with the earlier reports. (C) 2010 Elsevier B.V. All rights reserved.
dc.identifier.citationDurmus Z., Kavas H., Baykal A., SOZERI H., Alpsoy L., Celik S. U. , Toprak M. S. , -Synthesis and characterization of L-carnosine coated iron oxide nanoparticles-, JOURNAL OF ALLOYS AND COMPOUNDS, cilt.509, ss.2555-2561, 2011
dc.identifier.doi10.1016/j.jallcom.2010.11.088
dc.identifier.scopus78651373140
dc.identifier.urihttp://hdl.handle.net/20.500.12645/25052
dc.identifier.wosWOS:000287167700225
dc.titleSynthesis and characterization of L-carnosine coated iron oxide nanoparticles
dc.typeArticle
dspace.entity.typePublication
local.avesis.id02e06399-deba-4468-9bc2-6d83d5fe9e4b
local.indexed.atWOS
local.indexed.atScopus
local.publication.isinternational1

Files