Publication:
Applying Artificial Neural Networks on Two-Layer Semantic Trajectories for Predicting the Next Semantic Location

dc.contributor.authorKaratzoglou, Antonios
dc.contributor.authorSentuerk, HAKAN
dc.contributor.authorJablonski, Adrian
dc.contributor.authorBeigl, Michael
dc.contributor.institutionauthorŞENTÜRK, HAKAN
dc.date.accessioned2021-01-19T20:59:31Z
dc.date.available2021-01-19T20:59:31Z
dc.date.issued2017-01-01T00:00:00Z
dc.description.abstractLocation-awareness and prediction play a steadily increasing role as systems and services become more intelligent. At the same time semantics gain in importance in geolocation application. In this work, we investigate the use of artificial neural networks (ANNs) in the field of semantic location prediction. We evaluate three different ANN types: FFNN, RNN and LSTM on two different data sets on two different semantic levels each. In addition we compare each of them to a Markov model predictor. We show that neural networks perform overall well, with LSTM achieving the highest average score of 76,1%.
dc.identifier.doi10.1007/978-3-319-68612-7_27
dc.identifier.scopus85034259980
dc.identifier.urihttp://hdl.handle.net/20.500.12645/27992
dc.identifier.wosWOS:000426415100027
dc.subjectKaratzoglou A., Sentuerk H., Jablonski A., Beigl M., -Applying Artificial Neural Networks on Two-Layer Semantic Trajectories for Predicting the Next Semantic Location-, 26th International Conference on Artificial Neural Networks (ICANN), Alghero, İtalya, 11 - 14 Eylül 2017, cilt.10614, ss.233-241
dc.titleApplying Artificial Neural Networks on Two-Layer Semantic Trajectories for Predicting the Next Semantic Location
dc.typeConference Paper
dspace.entity.typePublication
local.avesis.id2fd030ea-2323-4a0a-a43a-d6df544499de
local.indexed.atWOS
local.indexed.atScopus
local.publication.isinternational1
relation.isAuthorOfPublication278fcf63-3b92-4368-bff6-f140ebd9aeb3
relation.isAuthorOfPublication.latestForDiscovery278fcf63-3b92-4368-bff6-f140ebd9aeb3

Files