Person:
KHAN, MOHAMMAD ASİF

Loading...
Profile Picture
Status
Organizational Units
Job Title
First Name
MOHAMMAD ASİF
Last Name
KHAN
Name
Email Address
Birth Date

Search Results

Now showing 1 - 10 of 11
  • PublicationMetadata only
    Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics
    (2019-02-01T00:00:00Z) Suwinski, Pawel; Ong, ChuangKee; Ling, Maurice H. T.; Poh, Yang Ming; Khan, Asif M.; Ong, Hui San; KHAN, MOHAMMAD ASİF
    There is a growing attention toward personalized medicine. This is led by a fundamental shift from the -one size fits all- paradigm for treatment of patients with conditions or predisposition to diseases, to one that embraces novel approaches, such as tailored target therapies, to achieve the best possible outcomes. Driven by these, several national and international genome projects have been initiated to reap the benefits of personalized medicine. Exome and targeted sequencing provide a balance between cost and benefit, in contrast to whole genome sequencing (WGS). Whole exome sequencing (WES) targets approximately 3% of the whole genome, which is the basis for protein-coding genes. Nonetheless, it has the characteristics of big data in large deployment. Herein, the application of WES and its relevance in advancing personalized medicine is reviewed. WES is mapped to Big Data -10 Vs- and the resulting challenges discussed. Application of existing biological databases and bioinformatics tools to address the bottleneck in data processing and analysis are presented, including the need for new generation big data analytics for the multi-omics challenges of personalized medicine. This includes the incorporation of artificial intelligence (AI) in the clinical utility landscape of genomic information, and future consideration to create a new frontier toward advancing the field of personalized medicine.
  • PublicationOpen Access
    Avian Influenza H7N9 Virus Adaptation to Human Hosts
    (2021-05-01T00:00:00Z) Tan, Swan; Sjaugi, Muhammad Farhan; Fong, Siew Chinn; Chong, Li Chuin; Abd Raman, Hadia Syahirah; Nik Mohamed, Nik Elena; August, Joseph Thomas; Khan, Asif M.; KHAN, MOHAMMAD ASİF
    Avian influenza virus A (H7N9), after circulating in avian hosts for decades, was identified as a human pathogen in 2013. Herein, amino acid substitutions possibly essential for human adaptation were identified by comparing the 4706 aligned overlapping nonamer position sequences (1-9, 2-10, etc.) of the reported 2014 and 2017 avian and human H7N9 datasets. The initial set of virus sequences (as of year 2014) exhibited a total of 109 avian-to-human (A2H) signature amino acid substitutions. Each represented the most prevalent substitution at a given avian virus nonamer position that was selectively adapted as the corresponding index (most prevalent sequence) of the human viruses. The majority of these avian substitutions were long-standing in the evolution of H7N9, and only 17 were first detected in 2013 as possibly essential for the initial human adaptation. Strikingly, continued evolution of the avian H7N9 virus has resulted in avian and human protein sequences that are almost identical. This rapid and continued adaptation of the avian H7N9 virus to the human host, with near identity of the avian and human viruses, is associated with increased human infection and a predicted greater risk of human-to-human transmission.
  • PublicationMetadata only
    Analysis of viral diversity for vaccine target discovery
    (2017-12-01T00:00:00Z) Khan, Asif M.; Hu, Yongli; Miotto, Olivo; Thevasagayam, Natascha M.; Sukumaran, Rashmi; Raman, Hadia Syahirah Abd; Brusic, Vladimir; Tan, Tin Wee; August, J. Thomas; KHAN, MOHAMMAD ASİF
    Background: Viral vaccine target discovery requires understanding the diversity of both the virus and the human immune system. The readily available and rapidly growing pool of viral sequence data in the public domain enable the identification and characterization of immune targets relevant to adaptive immunity. A systematic bioinformatics approach is necessary to facilitate the analysis of such large datasets for selection of potential candidate vaccine targets.
  • PublicationMetadata only
    High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection
    (2017-12-01T00:00:00Z) Soe, Hui Jen; Khan, Asif M.; Manikam, Rishya; Raju, Chandramathi Samudi; Vanhoutte, Paul; Sekaran, Shamala Devi; KHAN, MOHAMMAD ASİF
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-alpha), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
  • PublicationOpen Access
    Dynamics of Influenza A (H5N1) virus protein sequence diversity
    (2020-05-01T00:00:00Z) Abd Raman, Hadia Syahirah; Tan, Swan; August, Joseph Thomas; Khan, Asif M.; KHAN, MOHAMMAD ASİF
    Background. InfluenzaA(H5N1) virus is a global concern with potential as a pandemic threat. High sequence variability of influenza A viruses is a major challenge for effective vaccine design. A continuing goal towards this is a greater understanding of influenza A (H5N1) proteome sequence diversity in the context of the immune system (antigenic diversity), the dynamics of mutation, and effective strategies to overcome the diversity for vaccine design.
  • PublicationMetadata only
    STATdb: A Specialised Resource for the STATome
    (2014-08-01T00:00:00Z) Patro, C. Pawan K.; Khan, Asif M.; Tan, Tin Wee; Fu, Xin-Yuan; KHAN, MOHAMMAD ASİF
    Signal transducers and activators of transcription (STAT) proteins are key signalling molecules in metazoans, implicated in various cellular processes. Increased research in the field has resulted in the accumulation of STAT sequence and structure data, which are scattered across various public databases, missing extensive functional annotations, and prone to effort redundancy because of the dearth of community sharing. Therefore, there is a need to integrate the existing sequence, structure and functional data into a central repository, one that is enriched with annotations and provides a platform for community contributions. Herein, we present STATdb (publicly available at http://statdb.bic.nus.edu.sg/), the first integrated resource for STAT sequences comprising 1540 records representing the known STATome, enriched with existing structural and functional information from various databases and literature and including manual annotations. STATdb provides advanced features for data visualization, analysis and prediction, and community contributions. A key feature is a meta-predictor to characterise STAT sequences based on a novel classification that integrates STAT domain architecture, lineage and function. A curation policy workflow has been devised for regulated and structured community contributions, with an update policy for the seamless integration of new data and annotations.
  • PublicationMetadata only
    Identification of highly conserved, serotype-specific dengue virus sequences: implications for vaccine design
    (2019-12-01T00:00:00Z) Chong, Li Chuin; Khan, Asif M.; KHAN, MOHAMMAD ASİF
    Background: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.
  • PublicationMetadata only
    Mapping HLA-A2,-A3 and-B7 supertype-restricted T-cell epitopes in the ebolavirus proteome
    (2018-01-01T00:00:00Z) Lim, Wan Ching; Khan, Asif M.; KHAN, MOHAMMAD ASİF
    Background: Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family.
  • PublicationMetadata only
    African Trypanosome-Induced Blood-Brain Barrier Dysfunction under Shear Stress May Not Require ERK Activation
    (2015-03-01T00:00:00Z) Sumpio, Brandon J.; Chitragari, Gautham; Moriguchi, Takeshi; Shalaby, Sherif; Pappas-Brown, Valeria; Khan, Asif M.; Sekaran, Shamala Devi; Sumpio, Bauer E.; Grab, Dennis J.; KHAN, MOHAMMAD ASİF
    African trypanosomes are tsetse fly transmitted protozoan parasites responsible for human African trypanosomiasis, a disease characterized by a plethora of neurological symptoms and death. How the parasites under microvascular shear stress (SS) flow conditions in the brain cross the blood-brain barrier (BBB) is not known. In vitro studies using static models comprised of human brain microvascular endothelial cells (BMEC) show that BBB activation and crossing by trypanosomes requires the orchestration of parasite cysteine proteases and host calcium-mediated cell signaling. Here, we examine BMEC barrier function and the activation of extracellular signal-regulated kinase (ERK) 1/2 and ERK5, mitogen-activated protein kinase family regulators of microvascular permeability, under static and laminar SS flow and in the context of trypanosome infection. Confluent human BMEC were cultured in electric cell-substrate impedance sensing (ECIS) and parallel-plate glass slide chambers. The human BMEC were exposed to 2 or 14 dyn/cm(2) SS in the presence or absence of trypanosomes. Real-time changes in transendothelial electrical resistance (TEER) were monitored and phosphorylation of ERK1/2 and ERK5 analyzed by immunoblot assay. After reaching confluence under static conditions human BMEC TEER was found to rapidly increase when exposed to 2 dyn/cm2 SS, a condition that mimics SS in brain postcapillary venules. Addition of African trypanosomes caused a rapid drop in human BMEC TEER. Increasing SS to 14 dyn/cm2, a condition mimicking SS in brain capillaries, led to a transient increase in TEER in both control and infected human BMEC. However, no differences in ERK1/2 and ERK5 activation were found under any condition tested. African trypanosomiasis alters BBB permeability under low shear conditions through an ERK1/2 and ERK5 independent pathway.
  • PublicationMetadata only
    Absence of BapA type III effector protein affects Burkholderia pseudomallei intracellular lifecycle in human host cells
    (2021-09-01T00:00:00Z) Choh, Leang-Chung; Ong, Guang-Han; Chua, Eng-Guan; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Khan, Asif M.; Wise, Micheal J.; Wong, Kum-Thong; Vadivelu, Jamuna; KHAN, MOHAMMAD ASİF
    The etiological agent of melioidosis, Burkholderia pseudomallei, utilises a type III secretion system cluster 3 (T3SS3) to deliver proteins termed type III effectors (T3SEs) into the host cytoplasm in order to establish an intracellular lifecycle in phagocytic and non-phagocytic cells, thus playing an important role in pathogenesis. To gain insight into possible functional roles for BapA, a putative T3SE with unknown function, in the intracellular lifecycle of B.pseudomallei, bapA gene knockout mutant was constructed. The effect of the knockout on virulence to the otherwise isogenic parental strain, K96243, was studied by cellular infection assays and Caenorhabditis elegans killing assay. The attachment and subsequent entry into A549 cells was significantly (P < 0.05) attenuated in the Delta bapA compared to K96243. However, intracellular replication was not affected. Furthermore, the cell-to-cell spreading capacity of Delta bapA was impaired although the mutant exhibited no evident defect in its actin tail formation. Additionally, phagocytosis and intracellular replication rates of Delta bapA in U937 macrophage cells were significantly reduced relative to K96243 without phagosomal escape being affected. Based on these observations, we conclude that the BapA T3SE could play an important role in B.pseudomallei intracellular lifecycle, especially, in the early stages of attachment and entry into the host cell.