Person:
KHAN, MOHAMMAD ASİF

Loading...
Profile Picture
Status
Organizational Units
Job Title
First Name
MOHAMMAD ASİF
Last Name
KHAN
Name
Email Address
Birth Date

Search Results

Now showing 1 - 10 of 22
  • PublicationMetadata only
    Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection
    (2020-08-01T00:00:00Z) Soe, Hui Jen; Manikam, Rishya; Raju, Chandramathi Samudi; Khan, MOHAMMAD ASİF; Sekaran, Shamala Devi; KHAN, MOHAMMAD ASİF
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
  • PublicationMetadata only
    T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System
    (2010-10-01T00:00:00Z) Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; KHAN, MOHAMMAD ASİF; Ong, Terenze Yao Rui; Samad, Hanif M.; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee; KHAN, MOHAMMAD ASİF
    Background: Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments.
  • PublicationOpen Access
    Avian Influenza H7N9 Virus Adaptation to Human Hosts
    (2021-05-01T00:00:00Z) Tan, Swan; Sjaugi, Muhammad Farhan; Fong, Siew Chinn; Chong, Li Chuin; Abd Raman, Hadia Syahirah; Nik Mohamed, Nik Elena; August, Joseph Thomas; Khan, Asif M.; KHAN, MOHAMMAD ASİF
    Avian influenza virus A (H7N9), after circulating in avian hosts for decades, was identified as a human pathogen in 2013. Herein, amino acid substitutions possibly essential for human adaptation were identified by comparing the 4706 aligned overlapping nonamer position sequences (1-9, 2-10, etc.) of the reported 2014 and 2017 avian and human H7N9 datasets. The initial set of virus sequences (as of year 2014) exhibited a total of 109 avian-to-human (A2H) signature amino acid substitutions. Each represented the most prevalent substitution at a given avian virus nonamer position that was selectively adapted as the corresponding index (most prevalent sequence) of the human viruses. The majority of these avian substitutions were long-standing in the evolution of H7N9, and only 17 were first detected in 2013 as possibly essential for the initial human adaptation. Strikingly, continued evolution of the avian H7N9 virus has resulted in avian and human protein sequences that are almost identical. This rapid and continued adaptation of the avian H7N9 virus to the human host, with near identity of the avian and human viruses, is associated with increased human infection and a predicted greater risk of human-to-human transmission.
  • PublicationMetadata only
    Dissecting the Dynamics of HIV-1 Protein Sequence Diversity
    (2013-04-01T00:00:00Z) Hu, Yongli; Tan, Paul ThiamJoo; Tan, Tin Wee; August, J. Thomas; KHAN, MOHAMMAD ASİF; KHAN, MOHAMMAD ASİF
    The rapid mutation of human immunodeficiency virus-type 1 (HIV-1) and the limited characterization of the composition and incidence of the variant population are major obstacles to the development of an effective HIV-1 vaccine. This issue was addressed by a comprehensive analysis of over 58,000 clade B HIV-1 protein sequences reported over at least 26 years. The sequences were aligned and the 2,874 overlapping nonamer amino acid positions of the viral proteome, each a possible core binding domain for human leukocyte antigen molecules and T-cell receptors, were quantitatively analyzed for four patterns of sequence motifs: (1) -index-, the most prevalent sequence; (2) -major- variant, the most common variant sequence; (3) -minor- variants, multiple different sequences, each with an incidence less than that of the major variant; and (4) -unique- variants, each observed only once in the alignment. The collective incidence of the major, minor, and unique variants at each nonamer position represented the total variant population for the position. Positions with more than 50% total variants contained correspondingly reduced incidences of index and major variant sequences and increased minor and unique variants. Highly diverse positions, with 80 to 98% variant nonamer sequences, were present in each protein, including 5% of Gag, and 27% of Env and Nef, each. The multitude of different variant nonamer sequences (i.e. nonatypes; up to 68%) at the highly diverse positions, represented by the major, multiple minor, and multiple unique variants likely supported variants function both in immune escape and as altered peptide ligands with deleterious T-cell responses. The patterns of mutational change were consistent with the sequences of individual HXB2 and C1P viruses and can be considered applicable to all HIV-1 viruses. This characterization of HIV-1 protein mutation provides a foundation for the design of peptide-based vaccines and therapeutics.
  • PublicationMetadata only
    Developing critical thinking inSTEMeducation through inquiry-based writing in the laboratory classroom
    (2021-01-01T00:00:00Z) Jeon, Ah-Jung; Kellogg, David; Khan, MOHAMMAD ASİF; Tucker-Kellogg, Greg; KHAN, MOHAMMAD ASİF
    Laboratory pedagogy is moving away from step-by-step instructions and toward inquiry-based learning, but only now developing methods for integrating inquiry-based writing (IBW) practices into the laboratory course. Based on an earlier proposal (Science 2011;332:919), we designed and implemented an IBW sequence in a university bioinformatics course. We automatically generated unique, double-blinded, biologically plausible DNA sequences for each student. After guided instruction, students investigated sequences independently and responded through IBW writing assignments. IBW assignments were structured as condensed versions of a scientific research article, and because the sequences were double blinded, they were also assessed as authentic science and evaluated on clarity and persuasiveness. We piloted the approach in a seven-day workshop (35 students) at Perdana University in Malaysia. We observed dramatically improved student engagement and indirect evidence of improved learning outcomes over a similar workshop without IBW. Based on student feedback, initial discomfort with the writing component abated in favor of an overall positive response and increasing comfort with the high demands of student writing. Similarly, encouraging results were found in a semester length undergraduate module at the National University of Singapore (155 students).
  • PublicationMetadata only
    West Nile Virus T-Cell Ligand Sequences Shared with Other Flaviviruses: a Multitude of Variant Sequences as Potential Altered Peptide Ligands
    (2012-07-01T00:00:00Z) Jung, Keun-Ok; KHAN, MOHAMMAD ASİF; Tan, Benjamin Yong Liang; Hu, Yongli; Simon, Gregory G.; Nascimento, Eduardo J. M.; Lemonnier, Francois; Brusic, Vladimir; Miotto, Olivo; Tan, Tin Wee; Marques, Ernesto T. A.; Dhalia, Rafael; Salmon, Jerome; August, J. Thomas; KHAN, MOHAMMAD ASİF
    Phylogenetic relatedness and cocirculation of several major human pathogen flaviviruses are recognized as a possible cause of deleterious immune responses to mixed infection or immunization and call for a greater understanding of the inter-Flavivirus protein homologies. This study focused on the identification of human leukocyte antigen (HLA)-restricted West Nile virus (WNV) T-cell ligands and characterization of their distribution in reported sequence data of WNV and other flaviviruses. H-2-deficient mice transgenic for either A2, A24, B7, DR2, DR3, or DR4 HLA alleles were immunized with overlapping peptides of the WNV proteome, and peptide-specific T-cell activation was measured by gamma interferon (IFN-gamma) enzyme-linked immunosorbent spot (ELISpot) assays. Approximately 30% (137) of the WNV proteome peptides were identified as HLA-restricted T-cell ligands. The majority of these ligands were conserved in similar to >= 88% of analyzed WNV sequences. Notably, only 51 were WNV specific, and the remaining 86, chiefly of E, NS3, and NS5, shared an identity of nine or more consecutive amino acids with sequences of 64 other flaviviruses, including several major human pathogens. Many of the shared ligands had an incidence of >50% in the analyzed sequences of one or more of six major flaviviruses. The multitude of WNV sequences shared with other flaviviruses as interspecies variants highlights the possible hazard of defective T-cell activation by altered peptide ligands in the event of dual exposure to WNV and other flaviviruses, by either infection or immunization. The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.
  • PublicationOpen Access
    Dynamics of Influenza A (H5N1) virus protein sequence diversity
    (2020-05-01T00:00:00Z) Abd Raman, Hadia Syahirah; Tan, Swan; August, Joseph Thomas; Khan, Asif M.; KHAN, MOHAMMAD ASİF
    Background. InfluenzaA(H5N1) virus is a global concern with potential as a pandemic threat. High sequence variability of influenza A viruses is a major challenge for effective vaccine design. A continuing goal towards this is a greater understanding of influenza A (H5N1) proteome sequence diversity in the context of the immune system (antigenic diversity), the dynamics of mutation, and effective strategies to overcome the diversity for vaccine design.
  • PublicationMetadata only
    STATdb: A Specialised Resource for the STATome
    (2014-08-01T00:00:00Z) Patro, C. Pawan K.; Khan, Asif M.; Tan, Tin Wee; Fu, Xin-Yuan; KHAN, MOHAMMAD ASİF
    Signal transducers and activators of transcription (STAT) proteins are key signalling molecules in metazoans, implicated in various cellular processes. Increased research in the field has resulted in the accumulation of STAT sequence and structure data, which are scattered across various public databases, missing extensive functional annotations, and prone to effort redundancy because of the dearth of community sharing. Therefore, there is a need to integrate the existing sequence, structure and functional data into a central repository, one that is enriched with annotations and provides a platform for community contributions. Herein, we present STATdb (publicly available at http://statdb.bic.nus.edu.sg/), the first integrated resource for STAT sequences comprising 1540 records representing the known STATome, enriched with existing structural and functional information from various databases and literature and including manual annotations. STATdb provides advanced features for data visualization, analysis and prediction, and community contributions. A key feature is a meta-predictor to characterise STAT sequences based on a novel classification that integrates STAT domain architecture, lineage and function. A curation policy workflow has been devised for regulated and structured community contributions, with an update policy for the seamless integration of new data and annotations.
  • PublicationMetadata only
    Identification of highly conserved, serotype-specific dengue virus sequences: implications for vaccine design
    (2019-12-01T00:00:00Z) Chong, Li Chuin; Khan, Asif M.; KHAN, MOHAMMAD ASİF
    Background: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.
  • PublicationMetadata only
    Cytokine Expression Profile of Dengue Patients at Different Phases of Illness
    (2012-12-01T00:00:00Z) Rathakrishnan, Anusyah; Wang, Seok Mui; Hu, Yongli; KHAN, MOHAMMAD ASİF; Ponnampalavanar, Sasheela; Lum, Lucy Chai See; Manikam, Rishya; Sekaran, Shamala Devi; KHAN, MOHAMMAD ASİF
    Background: Dengue is an important medical problem, with symptoms ranging from mild dengue fever to severe forms of the disease, where vascular leakage leads to hypovolemic shock. Cytokines have been implicated to play a role in the progression of severe dengue disease; however, their profile in dengue patients and the synergy that leads to continued plasma leakage is not clearly understood. Herein, we investigated the cytokine kinetics and profiles of dengue patients at different phases of illness to further understand the role of cytokines in dengue disease.