Person:
TIRIS, GİZEM

Loading...
Profile Picture

Status

Email Address

Birth Date

WoSScopusORCID

Name

Job Title

First Name

GİZEM

Last Name

TIRIS

Organizational Units

Search Results

Now showing 1 - 2 of 2
  • Publication

    A reusable and sensitive electrochemical sensor for determination of idarubicin in environmental and biological samples based on NiFe2O4 nanospheres anchored N-doped graphene quantum dots composite; an electrochemical and molecular docking investigation

    (2022-09-01T00:00:00Z) Mehmandoust, Mohammad; Pourhakkak, Pouran; TIRIS, GİZEM; Karimi-Maleh, Hassan; ERK, NEVİN; TIRIS, GİZEM
    An ultrasensitive and selective voltammetric sensor with ultra-trace level detection limit is introduced for idarubicin (IDA) determination in real samples. The as-synthesized nanocomposite was characterized by several techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), and Field emission scanning electron microscopy (FESEM). The electrocatalytic performance of the developed electrode was observed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The limit of detection (LOD) of the developed sensor for idarubicin is 1.0 nM, and the response is found to be in the dynamic concentration range of 0.01-1.9 mu mol/L in a Britton-Robinson buffer (B-R, pH = 6.0). Moreover, the fabricated electrode illustrated high selectivity with good repeatability and reproducibility for diagnosing idarubicin as an anthracycline antileukemic drug. Furthermore, to evaluate the validity of the recommended method, three real samples, including human plasma, urine, and water samples, were analyzed with satisfactory recovery and compared with high-performance liquid chromatography (HPLC). The minor groove-binding mode of interaction was also supported by docking simulation studies, emphasizing that IDA can bind to ds-DNA preferably and confirmed experimental results. The reduced assay time and the possibility of measuring a single sample with another anticancer drug without any interference are significant advantages compared to the HPLC. The developed and validated sensor could be a valuable point-of-care diagnostic tool for IDA quantification in patients.
  • PublicationOpen Access
    A sensitive voltammetric sensor for specific recognition of vitamin C in human plasma based on MAPbl(3) perovskite nanorods
    (2022-01-01T00:00:00Z) TIRIS, GİZEM; Khoshnavaz, Yasamin; Oven, Elif Naz; Mehmandoust, Mohammad; ERK, NEVİN; TIRIS, GİZEM
    A novel and sensitive electrode was suggested for the rapid determination of ascorbic acid (AA) using a glassy carbon electrode (GCE) modified with synthesized MAPbl(3) and L-cys (L-cys/MAPbl(3)/GCE). Determination of ascorbic acid as an important component of the human diet due to help in decreasing blood pressure and improving endothelial function is crucial. The synthesized MAPbl(3) was characterized by different methods, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The fabricated electrode exhibited superior electrical conductivity and fast electron transfer kinetics. The results illustrated that the developed electrode had an outstanding electrocatalytic activity towards the oxidation of AA in 0.1 M Britton-Robinson buffer(B-R) as a supporting electrolyte. The modified electrode demonstrated a linear range in differential pulse voltammetry of 0.02-11.4 mu M with a low detection limit of 8.0 nM for ascorbic acid. It can be stated that the proposed sensor can be successfully applied to the determination of ascorbic acid in human plasma samples.