Person:
AKDEMİR, ATİLLA

Loading...
Profile Picture
Status
Kurumdan Ayrılmıştır
Organizational Units
Job Title
First Name
ATİLLA
Last Name
AKDEMİR
Name
Email Address
Birth Date

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Thiosemicarbazide-Substituted Coumarins as Selective Inhibitors of the Tumor Associated Human Carbonic Anhydrases IX and XII
    (2022-07-01T00:00:00Z) GÜMÜŞ PALABIYIK, ARZU; Bozdag, Murat; AKDEMİR, ATİLLA; Angeli, Andrea; Selleri, Silvia; Carta, Fabrizio; Supuran, Claudiu T.; AKDEMİR, ATİLLA
    A novel series of thiosemicarbazide-substituted coumarins was synthesized and the inhibitory effects against four physiologically relevant carbonic anhydrase isoforms I, II, IX and XII showed selective activities on the tumor-associated IX and XII isozymes. Molecular modeling studies on selected compounds 14a and 22a were performed. The binding modes of such compounds were determined assuming their enzymatically active structures (i.e., cinnamic acid) in the thermodynamically favored, and not previously explored, E geometry. Molecular modelling suggests multiple interactions within the enzymatic cavity and may explain the high potency and selectivity reported for the hCAs IX and XII.
  • PublicationOpen Access
    Indole-Based Hydrazones Containing A Sulfonamide Moiety as Selective Inhibitors of Tumor-Associated Human Carbonic Anhydrase Isoforms IX and XII
    (2019-05-01) Demir-Yazici, Kubra; BUA, Silvia; Akgunes, Nurgul Mutlu; Akdemir, ATİLLA; Supuran, Claudiu T.; Guzel-Akdemir, Ozlen; AKDEMİR, ATİLLA
    Novel sulfonamidoindole-based hydrazones with a 2-(hydrazinocarbonyl)-3-phenyl-1Hindole-5-sulfonamide scaffold were synthesized and tested in enzyme inhibition assays against the tumor-associated carbonic anhydrase isoforms, hCA IX and XII, and the off-targets, hCA I and II. The compounds showed selectivity against hCA IX and XII over hCA I and II. Six compounds showed KI values lower than 10 nM against hCA IX or XII. Molecular modeling studies were performed to suggest binding interactions between the ligand and the hCA active sites.
  • PublicationOpen Access
    Five- and Six-Membered Nitrogen-Containing Compounds as Selective Carbonic Anhydrase Activators
    (2017-12-01) Mollica, Adriano; Macedonio, Giorgia; Stefanucci, Azzurra; Carradori, Simone; Akdemir, ATİLLA; ANGELI, Andrea; Supuran, Claudiu T.; AKDEMİR, ATİLLA
    It has been proven that specific isoforms of human carbonic anhydrase (hCA) are able to fine-tune physiological pathways connected to signal processing, and that decreased CAs expression negatively influences cognition, leading to mental retardation, Alzheimer’s disease, and aging-related cognitive dysfunctions. For this reason, a small library of natural and synthetic nitrogen containing cyclic derivatives was assayed as activators of four human isoforms of carbonic anhydrase (hCA I, II, IV and VII). Most of the compounds activated hCA I, IV and VII in the micromolar range, with KAs ranging between 3.46 and 80.5 µM, whereas they were not active towards hCA II (KAs > 100 µM). Two natural compounds, namely L-(+)-ergothioneine (1) and melatonin (2), displayed KAs towards hCA VII in the nanomolar range after evaluation by a CO2 hydration method in vitro, showing a rather efficient and selective activation profile with respect to histamine, used as a reference compound. Corroborated with the above in vitro findings, a molecular modelling in silico approach has been performed to correlate these biological data, and to elucidate the binding interaction of these activators within the enzyme active site.
  • PublicationOpen Access
    Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment
    (2020-10-01T00:00:00Z) Angeli, Andrea; Carta, Fabrizio; Nocentini, Alessio; Winum, Jean-Yves; Zalubovskis, Raivis; AKDEMİR, ATİLLA; Onnis, Valentina; Eldehna, Wagdy M.; Capasso, Clemente; De Simone, Giuseppina; Monti, Simona Maria; Carradori, Simone; Donald, William A.; Dedhar, Shoukat; Supuran, Claudiu T.; AKDEMİR, ATİLLA
    The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.