Person:
ÖZTÜRK CİVELEK, DİLEK

Loading...
Profile Picture
Google ScholarScopusORCIDPublons
Status
Organizational Units
Job Title
First Name
DİLEK
Last Name
ÖZTÜRK CİVELEK
Name
Email Address
Birth Date

Search Results

Now showing 1 - 3 of 3
  • PublicationMetadata only
    Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice
    (2023-02-01) Akyel Y. K.; Öztürk Civelek D.; Ozturk Seyhan N.; Gul S.; Gazioglu I.; Pala Kara Z.; Lévi F.; Kavakli I. H.; Okyar A.; ÖZTÜRK CİVELEK, DİLEK
    The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5′-deoxy-5-fluorocytidine (5′DFCR), 5′-deoxy-5-fluorouridine (5′DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma Cmax and AUC0-6h (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5′DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) ( p < 0.05). Similarly, Cmax and AUC0-6h values of 5′DFUR and 5-FU in liver were higher during the rest phase than activity phase ( p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5′DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase ( p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.
  • PublicationMetadata only
    Development of Curcumin and Turmerone Loaded Solid Lipid Nanoparticle for Topical Delivery: Optimization, Characterization and Skin Irritation Evaluation with 3D Tissue Model
    (2024-02-01) Aydin B.; Sagiroglu A.; Öztürk Civelek D.; Gokce M.; Bahadori F.; ÖZTÜRK CİVELEK, DİLEK
  • PublicationMetadata only
    Synthesis of Sorafenib−Ruthenium Complexes, Investigation of Biological Activities and Applications in Drug Delivery Systems as an Anticancer Agent
    (2024-03-01) Zengin Kurt B.; Öztürk Civelek D.; Çakmak E. B.; Kolcuoğlu Y.; Şenol H.; Sağlık Özkan B. N.; Dağ A.; Benkli K.; ZENGİN KURT, BELMA; ÖZTÜRK CİVELEK, DİLEK; ŞENOL, HALIL; DAĞ, AYDAN