Person:
DAĞ, AYDAN

Loading...
Profile Picture
Google ScholarScopusORCIDPublons
Status
Organizational Units
Job Title
First Name
AYDAN
Last Name
DAĞ
Name
Email Address
Birth Date

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Synthesis and Characterization of Biodegradable Amphiphilic Star and Y-Shaped Block Copolymers as Potential Carriers for Vinorelbine
    (2014-01-01T00:00:00Z) Bahadori, Fatemeh; Dag, Aydan; Durmaz, Hakan; Cakir, Nese; ONYUKSEL, Hayat; Tunca, Ümit; Topcu, Gulacti; Hızal, Gürkan; BAHADORİ, FATEMEH; DAĞ, AYDAN; TOPÇU, GÜLAÇTI
    Two amphiphilic block copolymers using hydrophobic poly(e-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) were successfully synthesized. One of them is an (A-b-B)(4) type star polymer [(PCL-b-PEG)(4)] and the other one is a Y-shaped PEG-(PCL)(2). A star-shaped polymer (PCL-b-PEG)(4) was prepared by ring-opening polymerization (ROP) of epsilon-caprolactone continued by click reaction of (PCL-azide)(4) and PEG-alkyne. The synthesis of Y-shaped PEG-(PCL)(2) block copolymer was carried out via Diels-Alder click reaction of a furan protected maleimide end-functionalized PEG (PEG-MI) with an anthracene end-functionalized PCL following the ROP of epsilon-caprolactone. The characterization of micelles is carried out using both materials in aqueous media as drug delivery vehicles, which showed satisfying results and enhanced the cytotoxic effect of the anti-cancer drug vinorelbine (VLB). However, micelles consisted of Y-shaped unimers were found to be more convenient for delivery of hydrophobic drugs such as VLB because they formed in lower concentration, carrying a higher amount of drugs and owing a monomodal distribution. We concluded that the free tails of hydrophobic chains in Y-shaped block copolymer facilitate the assembly of amphiphilic material in water to form micelles.
  • PublicationOpen Access
    GLUT-Targeting Phototherapeutic Nanoparticles for Synergistic Triple Combination Cancer Therapy.
    (2023-02-12T21:00:00Z) Cetin Ersen, Busra; Goncu, Beyza; Dag, Aydan; Birlik Demirel, Gokcen; DAĞ, AYDAN; GÖNCÜ, BEYZA SERVET
    The combination of multimodal therapies into one nanocarrier system is promising for its potential to enhance treatment performance by overcoming the efficacy problems encountered in conventional monomodal therapy. In this study, targeted and multimodal therapeutic hybrid nanocarriers are fabricated for breast cancer treatments. In this context, the synthesized gold nanorods (AuNRd), photothermal therapy (PTT) agent, are coated with doxorubicin (DOX) conjugated, targeted, and biocompatible tetrablock glycopeptide (P(DMAEMA--HMBAMA--FrucMA)--P(Lys)/DOX, P-DOX) polymer. Here, fructose-based (Fruc) glycopeptide polymer enhances cellular uptake into breast cancer through GLUT5. A photosensitizer molecule, indocyanine green (ICG), was loaded into the particles to provide photodynamic therapy (PDT) upon NIR light at 808 nm. In the final step of the fabrication, the polymer-coated nanoparticles are integrated with antisense ISIS5132 oligonucleotides to prevent apoptotic resistance of cells against drug molecules. The biocompatibility and therapeutic efficacy of the nanoparticles are evaluated on both human normal skin fibroblast cell (CCD-1079Sk) and human breast cancer cell (MCF7) lines. These multimodal therapeutic AuNRd@P-DOX/ICG/ISIS5132 nanoparticles demonstrate an efficient triple synergistic effect of chemo-/PTT/PDT, which is desired for breast cancer treatment. We believe that this promising multimodal therapeutic nanoparticle system can promote the further clinical application in the treatment of breast cancer and can also be adapted to other types of cancer.