Goal:
07 - Erişilebilir ve Temiz Enerji

Loading...
Project Logo
Description
Erişilebilir ve Temiz Enerji Herkes için karşılanabilir, güvenilir, sürdürülebilir ve modern enerjiye erişimi sağlamak

Publication Search Results

Now showing 1 - 6 of 6
  • PublicationMetadata only
    Nutritional Assessment and Use of Complementary and Alternative Medicine in Cancer Patients Treated with Radiotherapy and Chemotherapy
    (2019-06-01T00:00:00Z) Güneş Bayır, Ayşe; Güney, Merve; GÜNEŞ BAYIR, AYŞE
  • PublicationOpen Access
    Characterisationand microleakage of a new hydrophilic fissure sealent-Ultraseal XT®hydro™.
    (2016-08-01) GÜÇLÜ, ZEYNEP ASLI; DÖNMEZ, NAZMİYE; HURT, Andrew p; COLEMAN, Nicola; DÖNMEZ, NAZMİYE
    sealant, UltraSeal XT® hydro™ (Ultradent Products, USA), and to investigate its in vitro resistance to microleakage after placement on conventionally acid etched and sequentially lased and acid etched molars. Material and Methods: The sealant was characterised by Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Vickers indentation test. Occlusal surfaces of extracted human molars were either conventionally acid etched (n=10), or sequentially acid etched and laser irradiated (n=10). UltraSeal XT® hydro™ was applied to both groups of teeth which were then subjected to 2,500 thermocycles between 5 and 55°C prior to microleakage assessment by fuchsin dye penetration. Results: UltraSeal XT® hydro™ is an acrylate-based sealant that achieved a degree of conversion of 50.6±2.2% and a Vickers microhardness of 24.2±1.5 under standard light curing (1,000 mWcm-2 for 20 s). Fluoride ion release is negligible within a 14-day period. SEM and EDX analyses indicated that the sealant comprises irregular submicron and nano-sized silicon-, barium-, and aluminium-bearing reduce microleakage (Mann-Whitney U test, p<0.001). The lased teeth presented enhanced
  • PublicationMetadata only
    Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir)
    (2018-03-01T00:00:00Z) Polat, O.; Durmus, Z.; Coskun, F. M.; Coskun, M.; Turut, A.
    Exceptional properties such as dielectric, ferroelectric, piezoelectric, magnetic, catalytic, and photovoltaic of perovskite materials open new doors to many groundbreaking discoveries for unique device ideas. These materials properties are inherited from their crystal structures; therefore, the features can be tuned via varying details of the crystal structures. In the literature, LaCrO3 (LCO) is one those mostly examined perovskites for various purposes such as solid oxide fuel cells, catalytic converters, and sensors. In the present study, the band gap tuning of LCO was investigated via doping a transition element such as cobalt (Co), palladium (Pd), and iridium (Ir) into Cr atom. The synthesized doped and un-doped LCO powders were characterized by infrared spectra (IR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) was employed to study the surface topography of LCO and doped LCO thin films on silicon substrates. The band gaps of the LCO and doped LCO films were scrutinized using a UV-Vis spectrometer. Our study has shown that the band gap of LCO was successfully lowered from 3.4 eV to 2.66 eV and can be engineered via substitution at various mol% of transition elements (Co, Pd, Ir) onto B-site Cr atom in the LCO perovskite structure.
  • PublicationMetadata only
    Conserved Amino Acid Residues that Affect Structural Stability ofCandida boidiniiFormate Dehydrogenase
    (2020-09-01T00:00:00Z) Bulut, Huri; Yuksel, Busra; Gul, Mehmet; Eren, Meryem; Karatas, Ersin; Kara, Nazli; Yilmazer, Berin; KOÇYİĞİT, ABDÜRRAHİM; Labrou, Nikolaos E.; BİNAY, BARIŞ; KOÇYİĞİT, ABDÜRRAHİM
    The NAD(+)-dependent formate dehydrogenase (FDH; EC 1.2.1.2) fromCandida boidinii(CboFDH) has been extensively used in NAD(H)-dependent industrial biocatalysis as well as in the production of renewable fuels and chemicals from carbon dioxide. In the present work, the effect of amino acid residues Phe285, Gln287, and His311 on structural stability was investigated by site-directed mutagenesis. The wild-type and mutant enzymes (Gln287Glu, His311Gln, and Phe285Thr/His311Gln) were cloned and expressed inEscherichia coli.Circular dichroism (CD) spectroscopy was used to determine the effect of each mutation on thermostability. The results showed the decisive roles of Phe285, Gln287, and His311 on enhancing the enzyme-s thermostability. The melting temperatures for the wild-type and the mutant enzymes Gln287Glu, His311Gln, and Phe285Thr/His311Gln were 64, 70, 77, and 73 degrees C, respectively. The effects of pH and temperature on catalytic activity of the wild-type and mutant enzymes were also investigated. Interestingly, the mutant enzyme His311Gln exhibits a large shift of pH optimum at the basic pH range (1 pH unit) and substantial increase of the optimum temperature (25 degrees C). The present work supports the multifunctional role of the conserved residues Phe285, Gln287, and His311 and further underlines their pivotal roles as targets in protein engineering studies.
  • PublicationMetadata only
    Analytical tools for greenness assessment of chromatographic approaches: Application to pharmaceutical combinations of Indapamide, Perindopril and Amlodipine
    (2020-12-01T00:00:00Z) Saleh, Sarah S.; Lotfy, Hayam M.; Tiris, GİZEM; Erk, Nevin; Rostom, Yasmin; TIRIS, GİZEM
    The green profile of the proposed method was assessed and compared with reported classical methods via four tools of greenness which are: Eco-Scale, National Environmental Methods Index (NEMI), Assessment of Green Profile (AGP) and Green Analytical Procedure Index (GAPI). A simple, precise and rapid (RP-HPLC) has been developed for the quantification of Indapamide (IND), perindopril (PER) arginine and amlodipine besylate (ADB) in binary and ternary mixtures. A greener alternate RP-HPLC method was presented for the determination of pharmaceutical combinations composed of the cited medications using an eco-friendly eluent and quick run time with the least waste yield. Chromatographic separation was achieved using Waters Spherisorb ODS-2 C18 column (150 x 4.6 mm, i.d., 5 mu m) and eluent formed of acetonitrile : phosphate buffer (20 mM, pH = 3): methanol in the ratio of (65: 30: 5, by volume) at flow rate 1.0 mL/min with DAD-detection at 220 nm. This procedure was valid over linearity ranges of 0.5-20 mu g/mL, 2.5-40 mu g/mL and 2-40 mu g/mL for IND, PER and AML, respectively. The presented chromatographic method was completely validated regarding ICH guidelines and were statistically compared with those of the reported methods applying t-test and F-test at 95% confidence. The proposed method was found to be greener in terms of usage of hazardous chemicals and solvents, energy consumption, and waste production.
  • PublicationOpen Access
    Deciphering the role of autophagy in treatment of resistance mechanisms in glioblastoma
    (2021-02-01T00:00:00Z) KHAN, IMRAN; Baig, Mohammad Hassan; Mahfooz, Sadaf; Rahim, Moniba; KARAÇAM, BÜŞRA; ELBASAN, Elif Burçe; Ulasov, Ilya; Dong, Jae-June; HATİBOĞLU, MUSTAFA AZİZ; KHAN, IMRAN; KARAÇAM, BÜŞRA; ELBASAN, ELİF BURÇE; HATİBOĞLU, MUSTAFA AZİZ
    Autophagy is a process essential for cellular energy consumption, survival, and defense mechanisms. The role of autophagy in several types of human cancers has been explicitly explained; however, the underlying molecular mechanism of autophagy in glioblastoma remains ambiguous. Autophagy is thought to be a -double-edged sword-, and its effect on tumorigenesis varies with cell type. On the other hand, autophagy may play a significant role in the resistance mechanisms against various therapies. Therefore, it is of the utmost importance to gain insight into the molecular mechanisms deriving the autophagy-mediated therapeutic resistance and designing improved treatment strategies for glioblastoma. In this review, we discuss autophagy mechanisms, specifically its pro-survival and growth-suppressing mechanisms in glioblastomas. In addition, we try to shed some light on the autophagy-mediated activation of the cellular mechanisms supporting radioresistance and chemoresistance in glioblastoma. This review also highlights autophagy’s involvement in glioma stem cell behavior, underlining its role as a potential molecular target for therapeutic interventions.