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Abstract
Although the liver has a high regenerative capacity, 
as a result of massive hepatocyte death, liver failure 
occurs. In addition to liver failure, for acute, chronic 
and hereditary diseases of the liver, cell transplanta-
tion therapies can stimulate regeneration or at least 
ensure sufficient function until liver transplantation can 
be performed. The lack of donor organs and the risks 
of rejection have prompted extensive experimental 
and clinical research in the field of cellular transplanta-
tion. Transplantation of cell lineages involved in liver 
regeneration, including mature hepatocytes, fetal hepa-
tocytes, fetal liver progenitor cells, fetal stem cells, he-
patic progenitor cells, hepatic stem cells, mesenchymal 
stem cells, hematopoietic stem cells, and peripheral 
blood and umbilical cord blood stem cells, have been 
found to be beneficial in the treatment of liver failure. 
In this article, the results of experimental and clinical 
cell transplantation trials for liver failure are reviewed, 
with an emphasis on regeneration. 
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Core tip: Although the liver has a high regenerative 

capacity, as a result of massive hepatocyte death, liver 
failure occurs. In recent years, there has been exten-
sive experimental and clinical research in the field of 
cellular transplantation. Transplantation of cell lineages 
involved in liver regeneration, including mature and 
fetal hepatocytes, fetal liver progenitor and stem cells, 
hepatic progenitor and stem cells, mesenchymal stem 
cells, hematopoietic stem cells, and peripheral blood 
and umbilical cord blood stem cells, have been found 
to be beneficial for treating of liver failure. Herein, I re-
view the results of experimental and clinical cell trans-
plantation trials for liver failure. 
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INTRODUCTION
The liver provides various vital functions, including pro-
tein synthesis, detoxification, bile excretion and storage 
of  vitamins. It is necessary for survival that it should be 
regenerated following massive damage induced by envi-
ronmental toxins, infections and alcohol, etc. Although in 
normal conditions, hepatocytes, the primary cell type of  
the liver, are in G0 phase of  mitosis, following any injury 
they rapidly enter the G1 phase and undergo mitosis. 
S-phase hepatocytes can be located in all segments of  the 
lobule in the normal adult liver[1]. In the regenerating liver 
after partial hepatectomy (PH), periportal cells replicate 
first, probably reflecting their shorter G1 phase[2]. The 
peak of  DNA synthesis is within 40-44 h after PH in 
mice[3]. The average life span of  the hepatocytes is rela-
tively long, about 5 mo. These long-lived cells are capable 
of  at least 69 cell divisions and can restore normal archi-
tecture and impaired function in the injured liver[4]. He-
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patocytes are the cells that normally shoulder the burden 
of  regenerative growth after liver damage; therefore, they 
can be considered as the functional stem cells under most 
circumstances[5]. 

The liver is the only internal human organ capable 
of  natural regeneration. Detailed studies of  the mecha-
nisms that regulate liver growth have been performed in 
animals subjected to PH or chemical injury. Livers from 
small animals enlarge after transplantation to reach a 
liver size in proportion to the size of  the recipient animal 
(e.g., baboons to humans, small dogs to large dogs)[6]. In 
humans, previous studies have shown that the mean liver 
volume 6 mo after donor hepatectomy was 90.7% of  
the initial liver volume[7], and that the livers of  the right 
lobe donor group regenerated faster than those of  the 
left lobe donor group[8]. In fact, the growth of  the liver is 
a restoration of  function; the lobes that are removed do 
not regrow into their original form[9]. Nevertheless, func-
tional restoration may be sufficient for survival of  the 
organism. 

The human liver is composed of  mainly parenchymal 
cells, commonly referred to as “hepatocytes’’, which are 
arranged in 1-2 cells-thick plates surrounded by hepatic 
sinusoids. They constitute 80% of  the cell population of  
the liver. Sinusoidal endothelial cells, perisinusoidal mac-
rophages (Kupffer cells), stallate cells (Ito cells) and liver-
specific natural killer cells (pit cells) represent the non-
parenchymal cells[10]. 

Hepatocytes are rich in membranous and non-mem-
branous organelles and inclusions. Bile is secreted into 
the bile canaliculi, which are a part of  the intercellular 
space isolated by junctional complexes from the rest of  
the intercellular compartment. Near the portal space, bile 
canaliculi transform into the canal of  Hering, which is 
lined by both hepatocytes and cholangiocytes[10]. The ca-
nal of  Hering is thought to serve a reservoir of  liver pro-
genitor cells. The cell compartment that resides in the ca-
nal of  Hering has been called the progenitor (in humans) 
or the oval cell compartment (in rodents)[11]. In rodents, 
the canal barely extends beyond the limiting plate; in 
contrast, in humans, it extends to the proximate third of  
the lobule[12]. The epithelial cells of  the canal, called ‘‘oval 
cells’’, are oval in shape and can differentiate into both 
hepatocytes and cholangiocytes. Thus, it would appear 
that a name change from oval cells to ‘‘hepatic progenitor 
cells’’ (HPCs) is required[13]. The transdifferentiation of  
oval cells to hepatocytes may determine survival when it 
occurs during liver failure in humans. 

Adult hepatic stem cells are scarcely detectable under 
physiological conditions and during the normal process 
of  liver regeneration, presumably because of  their small 
numbers. Analyses of  oval cells have raised the possibility 
that adult hepatic stem cells are present in the canals of  
Herring, and that oval cells originate from the stem cells 
and differentiate into both the hepatic and cholangiocytic 
lineages[14]. Kuwahara et al[15] enumerated four distinct 
stem cell niches: the canal of  Hering (proximal biliary 
tree), the intralobular bile ducts, the peri-ductal ‘‘null’’ 

mononuclear cells and the peri-biliary hepatocytes. 
Although the liver has a high regenerative capacity, 

as a result of  massive hepatocyte death, liver failure oc-
curs. Liver transplantation, sometimes the only option for 
patient survival, often leads to immunological complica-
tions. On the other hand, it is limited by the availability 
of  donor organs. In addition to liver failure, for acute, 
chronic and hereditary diseases of  the liver, cell trans-
plantation therapies can stimulate regeneration or at least 
ensure sufficient function until liver transplantation can 
be performed. The lack of  donor organs and risks of  
rejection have prompted extensive research in the field 
of  cellular transplantation. In this article, I review hepatic 
cell types involved in liver regeneration and cell trans-
plantation therapies for liver failure, with an emphasis on 
regeneration. 

CATEGORIZATION OF STEM CELLS
Stem cells are the main cells of  organisms from which 
the all of  the mature body cells are derived. Their high 
proliferative capacity for self-renewal permit them to in-
crease their numbers by symmetric division. They may re-
main in the undifferentiated state for long periods. When 
the morphological as well as functional, differentiation 
begins, these cells differentiate into multiple specialized 
cell lineages. Stem cells are the source of  progenitor cells 
committed to one or several lineages. The committed 
progenitor cells exhibit a capacity for active proliferation 
and supply abundant daughter cells, which in turn give 
rise to terminally differentiated cells[14]. 

Stem cells are classified depending on the potential 
for differentiation into specialized cell types. The most 
talented stem cells, totipotent cells of  the zygote within 
first 4 d of  the intrauterine life, are able to form a full 
organism in an appropriate microenvironment. How-
ever, pluripotent cells, known as ‘‘embryonic stem cells’’
(ESCs), derived from the inner cell mass of  the em-
bryo, can form virtually any cell type derived from any 
of  three embryonic germ layers; ectoderm, mesoderm 
or endoderm. Thus, an embryonic stem cell can form 
hepatocytes (endodermal in origin), cardiomyocytes 
(mesodermal in origin), and neurons (ectodermal in ori-
gin). Surplus embryos obtained from in-vitro fertilization 
laboratories are the main sources of  the ESCs. However, 
some disadvantages including, high immune reaction risk 
and ethical concerns, limit their applications. Multipotent 
stem cells, known as ‘‘adult stem cells’’, with a relatively 
limited differentiation potential, can form different cell 
types of  the tissue. These cells reside together with the 
specialized cell types of  the adult tissues and are thought 
to be responsible for the tissue maintenance and repair. 
The exact mechanisms that force them to differentiate 
into a specialized cell type are not fully known. The two 
major populations of  adult stem cells are bone marrow 
mesenchymal and hematopoietic stem cells (HSCs). He-
matopoietic stem cells have a predetermined fate to form 
all types of  mature blood cells. Mesenchymal stem cells 
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can differentiate into multiple cell lineages, including ten-
don cells, muscle cells, osteocytes and fat cells. The term 
‘‘multipotent stromal cell’’ implies the multipotent stem 
cells of  both bone morrow and of  non-marrow tissue, 
such as umbilical cord blood, adipose tissue, muscle tis-
sue and dental pulp. In laboratory conditions, multipotent 
cells show plasticity. ‘‘Plasticity’’ or ‘‘transdifferentiation’’ 
means that the stem cells of  an adult tissue can gener-
ate differentiated cells types of  a different tissue. For 
instance, HSCs can transform into hepatocytes or brain 
stem cells or form skeletal muscle fibers. It is not clear 
if  this occurs in the body. Multipotent cells do not cause 
any immune reaction, because they are genetically identi-
cal to their hosts. However, these cells are restricted in 
their ability to form different cell types. Moreover, they 
have some disadvantages, including slow rate of  cell divi-
sion and difficulties in isolating sufficient numbers for 
application because of  their scarcity within tissues. The 
last type of  stem cells is unipotent stem cells, which have 
very limited capacity for differentiation and can give rise 
to only one type of  cell under normal conditions. For 
example, unipotent stem cells of  colony forming unit of  
erythrocytes (CFU-E) can only give rise to mature blood 
erythrocytes. 

In recent years, stem cells have been widely studied 
for their potential therapeutic use. However, some of  
studies were not successful. Researchers agree that as well 
as isolation of  adequate numbers of  healthy stem cells, 
selection of  the most convenient transportation route, 
regulation of  stem cell differentiation into a special cell 
type and obtaining the normal functions of  the differ-
entiated cells are very important regarding the benefit of  
stem cell applications. The most important risk of  the 
transplanted stem cells is generation of  tumors if  cell di-
vision occurs in an uncontrolled manner. Unfortunately, 
stem cell transplantation therapy may be considered as a 
double-edged sword. 

HEPATIC CELLS INVOLVED IN 
REGENERATION 
The liver can regenerate itself  by increasing the rate of  
hepatocyte mitosis and differentiation of  stem cells into 
hepatocytes or cholangiocytes. Stem cells are the main 
cell lineage for liver regeneration. Several studies suggest 
the existence of  one or more population of  cells (e.g., 
stem cells, progenitor cells and extrahepatic stem cells) 
that are able to differentiate into hepatocytes and biliary 
epithelial cells. However, the exact location of  these cells 
is not yet clear. In humans and rodents, potential liver 
stem cells may exist within the biliary tree. Both rodent 
and human ESCs, bone marrow HSCs, mesenchymal 
stem cells (MSCs), umbilical cord stem cells, fetal and 
adult liver progenitor cells, and mature hepatocytes have 
been reported to be capable of  self-renewal, giving rise to 
daughter hepatocytes both in vivo and in vitro[16]. Although 
the factors controlling proliferation, differentiation and 
secretion processes are not well defined, recent studies 

emphasize the role of  several local (microenvironment) 
and systemic factors. However, the exact triggering 
mechanisms for differentiation of  these cells into mature 
hepatocytes are not fully understood. 

During embryonic development, hepatoblasts gener-
ate the two epithelial cell lineages: hepatocytes and bili-
ary cells[17]. The area connecting the terminal segment of  
the biliary ductular system with parenchymal hepatocytes 
persists in the adult liver and is known as the canals of  
Hering[18]. The primitive intrahepatic bile ducts express-
ing both hepatocyte proteins and biliary epithelial mark-
ers have consequently been referred to as ‘‘transitional 
cells’’[19-21]. Transitional cells have properties intermediate 
between those of  oval cells and hepatocytes[20]. These 
cells are believed to remain in the adult liver as bipotential 
progenitors for both hepatocytes and biliary cells[21]. 

Many investigators favor the view that the liver har-
bors facultative stem cells that are located throughout 
the biliary epithelium. The activation of  these cells for 
transformation into mature hepatocytes is a conditional 
process that occurs only when the regenerative capacity 
of  hepatocytes is overwhelmed[22]. Hepatocyte differenti-
ation within bile ducts in the human liver has been noted, 
which has led to the belief  that small biliary cells, hepato-
cyte-like cells expressing both markers of  bile duct cells 
and hepatocytes, which repopulate severely damaged liver 
parenchyma, can function as a progenitor cell popula-
tion for new hepatocytes[23]. In rodents, early reactive bile 
ductules do not generally resemble hepatocytes, but later 
acquire features of  hepatocytes[22]. By contrast, direct evi-
dence for the transformation of  hepatocytes into biliary 
cells provided in cell culture had raised a possibility that 
hepatocytes themselves may be precursor cells for the 
biliary epithelium if  the latter’s ability to proliferate and 
repair themselves is compromised for some reason[24,25]. 

The oval cells represent the progeny of  liver stem 
cells and function as an amplification compartment for 
the generation of  ‘‘new’’ hepatocytes[22]. The oval cell 
compartment, consisting of  small ovoid cells with scant, 
lightly basophilic cytoplasm and pale blue staining oval 
nuclei[26], is widely used to describe liver progenitors. It is 
generally accepted that oval cells are bipotential transit-
amplified cells derived from normally quiescent ‘‘true 
stem cells’’, which reside in the biliary tree and are absent 
in the healthy liver[27]. In fact, to date, whether oval cells 
pre-exist in the tissue or develop from other adult cell 
types (e.g., bile duct cells) after injury, is unknown. The 
restricted potential to differentiate into hepatocytes and 
cholangiocytes qualifies oval cells more as progenitor 
cells than as true stem cells[28]. The oval cells compart-
ment can probably not to be attributed to a single cell 
type. A primitive oval cell population that do not express 
alpha-fetoprotein (AFP), cytokeratin 19 (CK-19), OV-6; 
a hepatocyte-like oval cell population that express AFP, 
but not OV-6; and a ductular-like oval cell population that 
not express AFP, but express CK 19 and OV-6 have been 
isolated[29]. It is presently unclear if  antigenically distinct 
subpopulations of  oval cells are derived from different 
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injury. These cells are rare in the liver, have a very long 
proliferation potential, and may be multipotent; however, 
their full potential has yet to be defined. These cells may 
be hematopoietic stem cell types that either reside in liver 
or bone marrow[50]. 

Another cell type related to the regeneration of  rat 
liver has been identified, referred to as ‘‘small hepato-
cytes’’ (small hepatocyte-like progenitor cells)[51,52]. This 
cell population is phenotypically different from fully dif-
ferentiated hepatocytes, cholangiocytes and oval cells. 
They represent a unique parenchymal (less differentiated) 
progenitor cell population[53]. These cells have an exten-
sive proliferative capacity and may represent a novel pro-
genitor cell population that responds to liver deficit when 
the replicative capacity of  differentiated hepatocytes is 
impaired, and can restore tissue mass[52]. However, there 
is still controversy as to whether these cells represent 
an intermediate state in oval cell differentiation or are 
derived from hepatocytes resistant to stem cells. Best et 
al[54] suggested that small hepatocytes are not the progeny 
of  oval cell precursors, but represent an independent 
liver progenitor cell population. By contrast, Vig et al[55] 
showed that oval cells can form small hepatocyte-like 
progenitor cell nodules during the regeneration stage af-
ter chronic hepatocellular liver injury.

A number of  studies have been published demon-
strating that stem/progenitor cells can be differentiated 
toward ‘‘hepatocyte-like cells’’, a term that has been used 
to describe cells generated in vitro that show some char-
acteristics of  mature hepatocytes, but are still not fully 
mature and/or characterized[56]. Classic studies by Evarts 
et al[57-59] demonstrated that oval cells gradually transform 
themselves into small basophilic hepatocytes, which then 
become fully mature hepatocytes and replace the lost 
liver mass. They also showed the transfer of  radiolabeled 
thymidine from oval cells to newly formed hepatocytes 
in vivo. Thus, the precursor-product relationship between 
oval cells and basophilic hepatocytes has been suggest-
ed[59].

Recently, a unique population of  liver-derived bipo-
tential liver progenitors was isolated from unmanipulated 
rat liver[60]. These bipotential liver cells express both he-
matopoietic stem cell markers, such as CD45, CD34 and 
thy-1, similar to oval cells[60,61], and endodermal/hepatic 
markers. In contrast to oval cells, these liver progenitors 
are negative for OV-6, cytokeratin 7 and CK 19, and ex-
press very little or no AFP[60,62]. Their capacity for hepatic 
differentiation makes them a valuable resource for im-
portant applications such as cell therapies for a variety of  
liver diseases[62]. 

Although mature hepatocytes and cholangiocytes 
represent the first and most important resource for tis-
sue repair, experimental data support the hypothesis that 
the liver also contains or activates a stem cell compart-
ment[63,64]. Herrera et al[65] isolated a pluripotent popula-
tion similar to rodent oval cells from adult liver and may 
be more mesenchymal in lineage. These cells expressed 
mesenchymal stem cell markers, but not the hematopoi-

precursor cells or if  their phenotype merely reflects the 
commitment of  an oval cell to a specific lineage[30]. 

Oval cells form ductular structures that communi-
cate with the biliary system at one end and terminate at 
a hepatocyte-forming blind end[31]. Markers commonly 
used to assess differentiation and to trace lineages of  oval 
cells include expressed antigenic markers for hepatocytes, 
biliary ducts and oval cells (BSD7, OC2, OC3, OV-1, 
and OV-6), intermediate filaments, extracellular matrix 
proteins (CK8, 18, 19), enzymes and secreted proteins 
(alpha-fetoprotein and gamma-glutamyl transferase)[32,33]. 
Oval cells also express some markers considered charac-
teristic of  stem cells, including stem cell factor[34], bcl-2[35] 
and cytokeratin 14[36]. They are also immunoreactive to 
antibodies generally associated with hematopoietic lin-
eages, such as CD34, and c-kit[37,38]; therefore, there may 
be a common lineage between hematopoietic and liver 
cell precursors. In a recent study, a population of  cells 
(beta-2-microglobulin-ve, Thy-1+ve) in rat and human 
bone marrow was identified that also expressed hepato-
cyte specific functions, suggesting that these cells may be 
hepatic stem cells. After intraportal infusion into rat liv-
ers, rat-derived bone marrow cells integrated with hepatic 
cell plates and differentiated into mature hepatocytes[39]. 
Moreover, Crosby et al[37] have shown that c-kit and CD34 
positive cells isolated from human liver are able to dif-
ferentiate into biliary epithelial cells and endothelial cells. 
Thus, biliary cells and endothelial cells may also share 
some common precursors. It has been postulated that 
oval cells arise either from cells lining the canals of  Her-
ing[31,40], from mature biliary cells[12], liver epithelial or 
stromal cells[41], or from circulating hematopoietic stem 
cells[42,43]. Additionally, some antigens traditionally associ-
ated with hematopoietic cells (c-kit and CD34) can also 
be expressed by oval cells, leading to the notion that at 
least some hepatic oval cells are directly derived from a 
precursor of  bone marrow origin[39,44]. Fausto et al[45] sug-
gested that bone barrow stem cells can generate oval cells 
and hepatocytes; however, transdifferentiation is very 
rare and inefficient. Bone marrow derived hepatocytes 
constituted from 0.008% to 0.8% of  total parenchymal 
cells; therefore, differentiation of  bone marrow cells into 
mature hepatocytes is very inefficient under physiological 
conditions[46]. Additionally, the repopulation process is 
not complete and is relatively slow[43,47]. 

Studies have demonstrated that HSCs have the capac-
ity to fuse with other cell types[48]. Several publications 
subsequently emerged to demonstrate that the appear-
ance of  new hepatocytes from bone marrow precursors 
in liver repopulation models was not caused by transdif-
ferentiation of  the marrow stem cells to hepatocytes, but 
to fusion of  the marrow cells with the hepatocytes of  
the recipient[48,49]. While fusion with hepatocytes in whole 
animal experiments may have a role, it cannot explain 
the appearance of  hepatocyte-like cells in cell cultures of  
bone marrow[25]. 

The periductular stem cells are one of  the other cell 
types related to liver regeneration in some types of  liver 
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etic stem cell markers. The absence of  staining for cyto-
keratin-19, CD117, and CD34 indicated that these cells 
were not oval stem cells. 

Castorina et al[64] reported that human liver stem cells 
express several mesenchymal markers, such as CD 44, but 
not hematopoietic stem cell markers. Additionally these 
multipotent cells express AFP, albumin, CK7 and CK19, 
indicating a partial commitment to hepatic and biliary 
lineages. Schmelzer et al[66,67] isolated two pluripotent he-
patic progenitors: hepatic stem cells and progenitors. The 
gene expression profile of  hepatic stem cells throughout 
life consists of  high levels of  expression of  cytokeratin 
19 (CK19), neuronal cell adhesion molecule (NCAM), 
epithelial cell adhesion molecule (EpCAM), and clau-
din-3 (CLDN-3); low levels of  albumin; and a complete 
absence of  expression of  AFP. By contrast, hepatoblasts, 
found as < 0.1% of  normal adult livers, express high 
levels of  AFP, elevated levels of  albumin, low levels of  
CK19 and a loss of  NCAM and CLDN-3. 

Notably, both hepatocytes and hepatic progenitor 
cells may differentiate into hepatocytes and biliary cells, 
as well indicating their bipotent differentiation capacity. 
Hence, both cell types meet the minimal definition cri-
teria of  a stem cell, i.e., the potential of  self-renewal to 
maintain the stem cell reserve, and a multiple differentia-
tion potential giving rise to progeny of  at least two differ-
ent lineages[68]. 

FACTORS RELATED TO HEPATIC 
REGENERATION
Studies of  liver injury have led the identification of  sev-
eral factors that are involved in the regulation of  cell acti-
vation related to liver regeneration. It is not clear whether 
the same factors known to be involved in normal hepatic 
regeneration are also involved in regeneration via the 
stem cell compartment. 

As mentioned before, the hepatic progenitor cell 
niche is located at the level of  the canals of  Hering. The 
ductular and periductular area is composed of  numerous 
different cells, such as portal myofibroblasts, stellate cells, 
endothelial cells, hepatocytes, cholangiocytes, Kupffer 
cells, pit cells and inflammatory cells. All these cells could 
interact and crosstalk with hepatic parenchymal cells, 
influencing their proliferative and differentiative pro-
cesses through the provision of  numerous signals within 
the niche[5]. The local environments of  endogenous and 
transplanted cells mainly affect their proliferation, differ-
entiation, secretion, and other functions[69,70]. Hepatocyte 
growth factor (HGF), epidermal growth factor (EGF), 
and transforming growth factor-α (TGF-α), as potent 
mitogens, are primarily associated with normal hepatic 
regeneration[71-73]. In cultures, the mouse liver progenitor 
cells differentiated into hepatocytes upon treatment with 
EGF or differentiated into biliary lineage cells upon treat-
ment with HGF[74]. In their quiescent state, hepatocytes 
do not fully respond to growth factors such as HGF, 
TGF and EGF, which are potent stimulators of  DNA 

replication for hepatocytes in primary culture[75-77]. In the 
intact liver, hepatocytes need to be ‘‘primed’’ to enter the 
cell cycle and respond to growth factors[73]. The results 
show that TNF acts as a primer to sensitize hepatocytes 
to the proliferative effects of  growth factors, and offers 
a mechanism to explain the initiation and progression 
phases of  liver regeneration after PH[77]. 

In addition to hepatocyte-autonomous signals, endo-
crine and paracrine factors are critical to normal regen-
eration, and extensive work has focused on the role of  
the liver microenvironment, i.e., non-parenchymal cells 
and the extra-cellular matrix (ECM), in liver homeostasis 
and regeneration[71,78]. Non-parenchymal cells, such as en-
dothelial cells, Kupffer cells, stellate cell and intrahepatic 
lymphocytes provide critical signals to hepatocytes dur-
ing regeneration[78-80]. Intercellular interaction seems to 
be crucial during liver regeneration. Indeed, the initiation 
of  liver regeneration involves the rapid and simultane-
ous activation of  multiple signaling pathways in both 
hepatocytes and non-parenchymal cells, which are the 
main sources of  tumor necrosis factor, interleukin-6,and 
heparin binding EGF[75,76,81]. Following acute liver injury, 
release of  IL-6 from Kupffer cells and neutrophils and 
the growth factors including HGF, EGF, TGF-α, and 
fibroblast growth factor-α released from hepatic stellate 
cells, stimulate hepatocytes to enter mitosis[76,81]. Stellate 
cells are regarded as the principal source of  extracellular 
matrix proteins during hepatic regeneration[82]. A recent 
study demonstrated that HSCs act as a positive regulator 
at the early phase and a negative regulator at the terminal 
phase of  liver regeneration through cell-cell interaction 
and cytokine networks[83]. The authors reported that 
high levels of  HGF at early phase of  liver regeneration 
stimulated oval cell proliferation via extracellular signal-
regulated kinase and p38 pathway, whereas high levels of  
TGF-β1 at the terminal phase of  liver regeneration sup-
pressed DNA synthesis of  oval cells. The shift between 
these two distinct effects depended on the balance be-
tween HGF and TGF-β1 secreted by HSCs. Paku et al[31] 
demonstrated that proliferating oval cells are closely asso-
ciated with stellate cells, suggesting that non-parenchymal 
cells nurture oval cell growth and differentiation through 
secretion of  growth factors and cytokines, and also by 
direct cell-to-cell interactions. The factors involved in the 
regulation of  oval cell activation include TGF, HGF and 
its receptor c-met, IL-6 and peroxisome proliferators/
peroxisome proliferator activated receptor alpha[84-87]. It is 
clear that from the first stem/progenitor activation phase 
to the final differentiation phase of  the oval cell cycle, 
several growth factors and other factors are effective.

More recent studies have emphasized the involve-
ment of  TNF-like weak inducer of  apoptosis (TWEAK), 
a member of  the TNF family, in the proliferation of  oval 
cells. TWEAK expressed by T cells can stimulate hepatic 
progenitor cell proliferation. It appears that TWEAK 
selectively promotes proliferation of  oval cells without 
having an effect on hepatocytes[87]. 

Some of  the other key molecules in the liver microen-
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vironment that determine regenerative behavior include 
the pro-inflammatory cytokines and angiogenic factors, 
such as vascular endothelial growth factor (VEGF)[80,88]. 

Changes in microenvironments may have contributed 
to the positive outcomes of  many liver cell transplanta-
tion studies, and might be initiated by the strong outputs 
(e.g., signaling, secretion) from the transplanted hepato-
cytes that drastically affect the environments to stimulate 
endogenous hepatocyte regeneration[89]. Improvement 
of  liver microenvironments related to liver regeneration 
is one of  the goals of  cell transplantation therapies. Re-
cently, numerous experimental and clinical studies have 
been performed investigating the factors that increase the 
benefit of  cell transplantation therapies and survival of  
the patients with liver damage or failure. 

CELL TYPES TRANSPLANTED FOR LIVER 
FAILURE
Cell transplantation therapy is a promising alternative 
approach that leads to donor cell-mediated repopulation 
of  the liver and improved survival rates in experimen-
tal models of  liver disease. It may serve to alleviate the 
symptoms while the patients are waiting for liver trans-
plantation. However, significant challenges remain before 
these cells can be used in humans, such as the lack of  
consensus about the immunophenotype of  liver progeni-
tor cells, uncertainty of  the physiological role of  reported 
candidate stem/progenitor cells, practicality of  obtaining 
sufficient quantity of  cells for clinical use, and concerns 
over ethics, long-term efficacy, and safety[16]. A registered 
clinical application based on stem cell technology will 
take at least an additional 5-10 years because of  certain 
limitations; e.g., the lack of  suitable cell sources and risk 
of  teratoma formation[90].

Stem cell therapy exerts its beneficial effect through 
a number of  mechanisms, not necessarily transdiffer-
entiation. Paracrine factors also have an important role 
in the improvement mechanism. Mature hepatocytes, 
stem/progenitor cells (ESCs, adipose-derived stem cells, 
umbilical stem cells, bone marrow-derived stem cells 
and oval cells), and hepatocyte-like cells are the main cell 
types used for cell transplantation in experimental and/
or clinical studies. Transplanted hepatocytes have high 
function, but short survival time, whereas transplanted 
stem/progenitor cells have weak function, but high pro-
liferative capacity. Hepatocyte-like cells accumulate over 
time via differentiation and proliferation[91]. However, 
the numbers of  hepatocytes needed for transplantation 
in humans can be quite large[92], cells that can differenti-
ate into mature hepatocytes have been great interest. 
Additionally, since hepatocytes are large in diameter, up 
to 70% of  transplanted hepatocytes get trapped in the 
hepatic sinusoids, which leads to temporary obstruction 
with subsequent portal hypertension[93], and they have a 
poor engraftment rate[94]. 

MATURE HEPATOCYTES 
Hepatocyte transplantation has been performed for more 
than 10 years in humans, meeting with varied degrees 
of  success[95]. Data published for almost 70 years have 
unequivocally shown that hepatocytes are the replicating 
cells responsible for liver regeneration and that progeni-
tor cell activation leading to lineage generation is not 
observed during this process[3,19,96]. Although the other 
cell types of  the liver are necessary to support hepatocyte 
replication and hepatic growth, it has now been estab-
lished that the hepatocyte has a remarkable capacity for 
cell proliferation and is the most efficient cell for liver 
repopulation after injury[45,75]. Therefore, transplantation 
of  mature hepatocytes into an injured liver seems to be 
helpful to support recovery process. However, trans-
planted hepatocytes have a low liver-engraftment rate 
and survival[97], and hepatocytes are only available from 
cadaveric donor livers, which mean that the cells largely 
lack transplantation quality and quantity. Moreover, cryo-
preservation of  mature hepatocytes before use leads to 
an additional substantial loss of  viability and function. 
Thus, research is aiming to obtain transplantable cells 
from embryonic and adult stem cells, or liver progenitor 
cells that can be expanded in vitro. One attractive alterna-
tive source of  transplantable hepatocytes is cells derived 
from an immortalized hepatocyte cell line that provides 
an unlimited supply of  transplantable cells[98]. Immortal-
ized hepatocytes could then grow in tissue culture and 
subsequently function as differentiated, non transformed 
hepatocytes following transplantation[98,99].

Experimental results 
Rhim et al[100,101] showed that a small number of  trans-
planted hepatocytes could repopulate the liver of  new-
born urokinase-type plasminogen activator (uPA) trans-
genic mice. Transplantation of  rat liver cells into these 
mice resulted in the complete reconstitution of  a mouse 
liver with rat hepatocytes. The transplanted liver cell 
populations replaced up to 80 % of  the diseased recipi-
ent liver. Overturf  et al[102] found evidence that short-term 
therapeutic liver repopulation does not require progeni-
tor or stem cells. The majority of  the transplanted cells 
apparently participated in the repopulation process and 
intermediate-size hepatocytes appeared to have a bet-
ter replicative capacity than small hepatocytes. Recently, 
transplanted hepatocytes were shown to engraft in the liv-
er of  animals with acute liver failure (ALF)[103]. However, 
only 20%-30% of  the transplanted hepatocytes survive 
and engraft in the liver of  rats[104]. In fact, several studies 
using rat models of  primary hepatocyte transplantation 
revealed that transplantation leads to efficacious donor 
chimerism[105-107]. When hepatocytes were transplanted via 
the spleen, cells were distributed immediately in peripor-
tal areas, fibrous septa and regenerative nodules of  the 
cirrhotic liver[107]. However, transplanted cell proliferation 
in the liver was limited, and animals did not show any dif-
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ferences in mortality over a 12-mo period. On the con-
trary, Kobayashi et al[108] found that intrasplenic cell trans-
plantation in extremely sick cirrhotic rats was associated 
with improvement in liver tests, coagulation abnormality 
and outcomes. Additionally, cell transplantation has been 
shown to prevent the development of  intracranial hyper-
tension in pigs following acute ischemic liver failure[109]. 

Immortalized hepatocytes have also been shown to 
improve the survival rate in an ALF model[110]. Immor-
talized hepatocytes that can function as well as primary 
hepatocytes following transplantation were found to be 
effective in the treatment of  liver failure in rats with end-
stage cirrhosis with hepatic encephalopathy[98,111]. The 
immortalized hepatocytes may achieve a meaningful liver 
population using a clonal cell line; however, the malignant 
potential of  these immortalized cell lines needs to be ful-
ly investigated before they could be applied in the clinic. 

Clinical results 
In an early study, in 10 Japanese patients with cirrhosis, 
hepatocytes (1-60 × 107) isolated from a piece of  their 
own liver were transplanted into various sites, includ-
ing the spleen[112]. In one of  these patients, transplanted 
hepatocytes were detected in the spleen 11 mo following 
transplantation. One of  these patients recovered. In an-
other trial, five patients with hepatic encephalopathy and 
multiple organ failure were transplanted with allogeneic 
hepatocytes (2.8 × 107-2.9 × 107) through the splenic 
artery[113]. Biochemical evidence of  liver injury improved 
significantly and blood ammonia levels decreased signifi-
cantly to normal levels in the hepatocyte-treated patients. 
Three of  these patients bridged to liver transplantation 
and were normal with more than 20 mo of  follow-up. 
Transplantation of  hepatocytes via the abdominal cav-
ity also has been found beneficial. Seven patients with 
fulminant hepatic failure (FHF) were transplanted (6 × 
107/kgBW) via the abdominal cavity resulting in survival 
and improved encephalopathy[114]. 

Cryopreserved hepatocyte transplantation is a bridg-
ing method while patients with chronic liver failure await 
liver transplantation. Three of  five patients with ALF 
who received transplantation of  1.3 × 109-3.9 × 1010 

cryopreserved hepatocytes through intrasplenic and in-
traportal infusion improved afterwards[115]. A patient with 
ALF infused intraportally with 8 × 109 cryopreserved hu-
man hepatocytes fully recovered 12 wk after transplanta-
tion[116]. Repeated application of  primary human hepato-
cytes seems to be safe and results in measurable benefits 
for patients with ALF.

HEPATIC PROGENITOR/STEM CELLS
Human hepatic stem cells, constituting approximately 
0.5%-2.5% of  liver parenchyma, can be isolated by im-
munoselection for epithelial cell adhesion molecule-
positive cells (EpCAM+)[67]. Isolation of  hepatic pro-
genitor cells from human material has proven to be very 
difficult. In fact, although hepatic progenitor cells express 

several markers, their unequivocal isolation as a pure 
fraction has been a major obstacle in liver progenitor cell 
research. Novel cell surface markers in adult progenitor 
cells include tight junction proteins, integrins, cadherins, 
cell adhesion molecules, receptors, membrane channels 
and other transmembrane proteins. Cell surface markers, 
CD133, claudin-7, cadherin 22, mucin-1, ros-1 and Ga-
brp 9 are overexpressed and are unique for the adult pro-
genitors[117]. Thymus cell antigen 1 (Thy-1) is a marker for 
sorting bipotential progenitor cells from human livers[118]. 
None of  the described markers are completely specific; 
therefore, isolation of  viable cells is limited[119]. 

Much less is known about the mechanisms of  oval 
cell replication and differentiation, although new infor-
mation on these topics is rapidly accumulating. Regarding 
cellular aspects of  liver growth and regeneration, it needs 
to be established what kind of  signaling mechanisms may 
exist, direct and/or indirect, between hepatocytes and 
oval cells that determines whether one cell type or the 
other is the main or initial target for a growth stimulus[45].

Experimental results
Schmelzer et al[67] demonstrated that purified EpCAM+ 
cells from fetal or postnatal livers are able to engraft the 
livers of  immunodeficient adult mice (with or without 
prior injury) and give rise to mature human liver paren-
chymal cells. Similar results were obtained by Weiss et 
al[118] through the isolation of  Thy-1+ cells from adult 
human livers and their transplantation in immunodefi-
cient Pfp/Rag2 mice. Analysis of  in situ material revealed 
that transplanted cells express human hepatic markers 
HepPar1 and albumin, indicating functional engraftment.

Oval cell proliferation is prominent in many models 
of  liver injury, including CCl4 treatment in combination 
with PH[120,121]. A recent study showed that transfer of  
oval cells to Wistar rats with FHF could significantly in-
crease their survival rate[122]. In the study of  Wang et al[123], 
3,5-diethoxycarbonyl-1,4-dihydrocollidine induced oval 
cell proliferation. Transplantation of  murine oval cells 
could repopulate the recipient liver in fumarylacetoac-
etate hydrolase-deficient mice, and rescue the phenotype. 

Clinical results
As far as I know, to date, no clinical application has been 
performed. 

FETAL HEPATOCYTES/FETAL LIVER 
PROGENITOR CELLS/FETAL STEM CELLS
Fetal human hepatocytes exhibit unique properties, in-
cluding the capacity for extensive proliferation and excel-
lent recovery following partial liver resection[124]. Howev-
er, experimental studies have predominantly focused on 
transplantation of  fetal hepatic progenitor cells. Oertel et 
al[125] purified hepatic stem/progenitor cells from fetal liv-
ers that are fully capable of  repopulating the normal adult 
liver. This represents a major advance toward developing 
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protocols that will be essential for clinical application of  
liver cell transplantation therapy. 

Experimental results
After transplantation of  mouse fetal liver progenitor cells 
into 14 to 20 d-old uPA-mice with subacute liver failure, 
donor-derived regeneration nodules were detectable. Fetal 
liver cells showed a mature hepatic phenotype, as estab-
lished by gene expression profiling and a functional inte-
gration within in the first 4 wk after transplantation[126]. 
Transplanted rat fetal liver epithelial progenitor cells were 
able to repopulate a recipient liver subjected to PH, alone 
or with retrorsine, in syngeneic dipeptidyl peptidase IV 
(DPPIV) mutant rats[127]. Progenitor cells were able to dif-
ferentiate into both hepatocytes and bile epithelial cells, 
unlike mature hepatocytes that are not able to differen-
tiate to bile epithelial cells. Moreover, progenitor cells 
continued to proliferate for longer than hepatocytes after 
transplantation. Likewise, Dlk+ hepatic stem/progeni-
tor cells purified from rat midgestational fetal livers were 
able to extensively repopulate the host liver in syngeneic 
DPPIV mutant rats subjected to PH alone[125]. In the 
CCl4 rat model of  FHF with 2/3 hepatectomy, fetal liver 
stem/progenitor cells were found to be effective to repair 
the damaged liver[89]. Thus, fetal hepatic stem/progenitor 
cells exhibit potency for reconstitution of  the adult liver 
under a particular set of  conditions. 

Clinical results
As far as I know, to date, no clinical application has been 
performed. 

EMBRYONIC STEM CELLS
Experimental results 
The first report of  hepatic differentiation of  mouse 
embryonic cells was in 2001 by Hamazaki et al[128], who 
produced an embryoid body from an ES cell and subse-
quently added fibroblast growth factor, HGF, oncostatin 
M (OsM) and dexamethasone (Dex) to induce the dif-
ferentiation of  cells exhibiting hepatocyte-like properties. 
The results of  Heo et al[129] are particularly noteworthy, 
as they report that liver precursor cells induced from 
ES cells in the absence of  exogenous growth factors 
or feeder cell layers also have the ability to differentiate 
into biliary epithelial cells. In 2003, Yamamoto et al[130] 
produced hepatic cells with a high level of  liver function 
by transplanting ES cells into mice livers 24 h after CCl4 
intoxication. In terms of  ultrastructural analysis, these 
ES-derived hepatocytes were generally similar to normal 
hepatocytes. Additionally, no teratoma formation was 
observed in the transplant recipients. In the study of  Hu 
et al[131], ES-derived hepatocytes could improve the life 
quality and lengthen the survival time of  CCl4-induced 
FHF. Sprague-Dawley rats with surgically induced liver 
failure via 90% hepatectomy, receiving 106-108 ESCs as 
splenic transplantation, showed 100% survival rate up to 
3 mo[132]. Similarly, hepatocytes derived from ES cells in 

a bioartificial assisted liver device were able to improve 
survival in rats with liver failure induced by galactosamine 
after 10 h of  extracorporeal liver dialysis[133]. Additionally, 
embryonic derived hepatocytes, implanted subcutaneous-
ly as a bioartificial liver device into mice subjected to 90% 
hepatectomy, reversed the liver failure[134]. Transplantation 
of  ES cell-derived hepatic cells significantly suppressed 
the onset of  fibrosis in mice[135]. 

Clinical results 
Embryonic stem cell studies remain at the preclinical 
stage because of  the risk of  teratomas. Despite these 
successful animal studies, there have been no clinical tri-
als using human ES cells to treat liver diseases in human 
patients, because utilization of  human ES cells raises seri-
ous ethical questions in many countries. 

MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) are an adult stem cells 
population found in numerous living tissues. It has been 
reported that among MSCs obtained from bone mar-
row, adipose tissue, umbilical cord blood and placenta, 
several hepatocyte-like cells have the ability to differenti-
ate[136-138]. Besides, MSCs, immune-privileged cells with low 
MHC Ⅰ and no MHC Ⅱ expression have low rejection risk 
and, as such, are a particularly promising source of  cells for 
the treatment of  acute and degenerative liver diseases[136]. 
Chamberlain et al[139] transplanted clonal human MSCs into 
preimmune fetal sheep by intrahepatic and intraperitoneal 
routes in their study. The intrahepatic injection of  human 
MSCs was safe and resulted in more efficient generation 
of  hepatocytes throughout the liver parenchyma at days 
56-70. Human MSCs cells accumulated in the injured liver. 
The injured liver may produce regulatory factors for hom-
ing of  stem cells to the injury site[135].

Bone marrow-derived mesenchymal stem cells 
The most important source of  MSCs is bone marrow. 

Experimental results: A recent study by Carvalho et 
al[140] demonstrated that MSCs injection into the portal 
vein of  mice or rats with liver cirrhosis induced by CCl4 

and ethanol did not reduce hepatic fibrosis or promote 
any improvement in parameters of  liver function. How-
ever; Oyagi et al[141] demonstrated benefits in transplanta-
tion of  bone marrow-derived mesenchymal stem cells 
(BMMCs) cultured with HGF in CCl4-induced rats. 
Transplantation of  the BMMCs into liver-injured rats 
restored their serum albumin level and significantly sup-
pressed transaminase activity and liver fibrosis. These 
effects were not seen when the BMMCs were cultured 
without HGF. Similar results of  Fang et al[142] supported 
the beneficial effects of  BMMCs on reducing collagen 
deposition. 

Clinical results: Autologous BMMC transplantation to 
53 patients with liver failure caused by hepatitis B had fa-
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vorable short-term efficacy with improved levels total bil-
irubin, prothrombin time and Model for End-Stage Liver 
Disease score of  patients 2-3 wk after transplantation[143]. 
Patients who received 120 mL of  autologous bone mar-
row fluid via a hepatic artery showed improved hepatic 
function in the early period (1-48 wk). Analysis showed 
no adverse effects from bone marrow administration 
a long observation period. Additionally, data obtained 
from eight patients with liver cirrhosis showed that MSCs 
injection through peripheral or portal vein under ultra-
sound guidance could be used for the treatment of  end-
stage liver disease with satisfactory tolerability[144]. The 
study of  Amer et al[145] reported the safety and short-term 
efficacy of  autologous bone marrow-derived hepatocyte-
like cell transplantation in the treatment of  patients with 
end-stage liver cell failure. Comparing hepatic and splenic 
routes of  injection, there was no significant difference, 
except in the first month. The splenic route was techni-
cally easier, although it was associated with a higher inci-
dence of  mild complications (fever and transient shiver-
ing).

Placenta-derived mesenchymal stem cells
Another promising source of  MSCs is the placenta. Hu-
man placental MSCs are free of  ethical concerns, are 
non-invasively accessible, abundant and strongly immu-
nosuppressive[146,147]. Placenta derived MSCs can be dif-
ferentiated into hepatocyte-like cells in vitro[148]. 

Experimental results: The experimental study of  Cao 
et al[149] revealed that human placental MSCs could not 
only differentiate into hepatocyte-like cells in vitro and 
in vivo, but also could prolong the survival time of  pigs 
with ALF. The survival rate was significantly higher in the 
transplantation group than in the control group (66.7% 
vs 0%). Recently, van Poll et al[150] provided evidence that 
MSC-derived molecules directly inhibit hepatocellular 
death, enhance liver regeneration and ultimately improve 
survival in rats undergoing D-galactosamine-induced 
FHF. Systemic infusion of  MSC-conditioned medium 
resulted in a 90% reduction of  apoptotic hepatocellular 
death and a three-fold increment in the number of  pro-
liferating hepatocytes. Moreover, transplanted human pla-
cental MSCs ameliorate CCl4- induced liver cirrhosis by 
their anti-fibrotic effect in a rat model[151]. Mohsin et al[152] 
reported that pretreated MSCs expressing high levels 
of  albumin, cytokeratin 8, 18, TAT and HNF1α trans-
planted in the left lateral lobe of  mice with liver fibrosis 
resulted in a significant reduction in the fibrotic area in 
the liver, concomitant with improved serum levels of  bili-
rubin and alkaline phosphatase. Cao et al[149] compared the 
effects of  transplantation of  placental MSCs through the 
peripheral (jugular) and portal veins; their data suggested 
that both transplantation routes were safe, with no portal 
vein thrombosis. However, histological data revealed that 
transplantation of  human placental MSCs via the portal 
vein reduced liver inflammation, decreased hepatic dena-
turation and necrosis, and promoted liver regeneration. 

Clinical results: Despite the several positive results gained 
from experimental studies, the therapeutic role of  MSCs 
in liver regeneration must be further investigated, as the 
clinical evidence is still limited. As far as I know, to date, 
no clinical application has been performed. 

Adipose tissue-derived mesenchymal stem cells 
Adipose tissue is a source of  MSCs that can be easily 
isolated, selected and induced into mature, transplantable 
hepatocytes. The fact that they are easy to procure ex vivo 
in large numbers makes them an attractive tool for clini-
cal studies in the context of  establishing an alternative 
therapy for liver dysfunction[153]. Adipose tissue-derived 
MSCs have immunomodulation, differentiation (plastic-
ity), homing, revascularization, anti-apoptotic and tissue 
regenerating abilities[136]. 

Experimental results: Transplanted adipose-derived MSCs 
through tail vein injection were able to differentiate into 
hepatocytes in BALB/c nude mice with CCl4-induced 
liver injury, and were able to function like human mature 
hepatocytes. Adipose-derived MSCs could be differentiat-
ed into hepatocytes within 13 d[154]. When approximately 
105 of  adipose-derived human MSCs (0.2 mL of  the cell 
suspension via tail vein) transplanted by injection into 
mice with liver failure, the ammonia concentration fell to 
near normal levels within 24 h[153]. Of  the various trans-
plantation routes (tail vein, portal vein, and direct liver 
parenchymal injections), transplantation via the tail vein 
was found to be the most effective in reducing biochemi-
cal parameters in CCl4-induced liver failure in mice[155].

Clinical results: In the study of  Zhang et al[156] 30 chron-
ic hepatitis B patients with decompensated livers received 
umbilical cord-derived MSC transfusion. No significant 
side effects or complications were observed. Liver func-
tion improved and the volume of  ascites significantly 
decreased. Umbilical cord-derived MSC have also been 
found to be safe and beneficial in the treatment of  the 
patients with acute-on chronic liver failure associated with 
hepatitis B virus infection. The cell transfusions signifi-
cantly increased the survival rates in ACLF patients[157]. 

Bone marrow-derived hematopoietic stem cells
In 1999 Petersen et al[42] and in 2000 Lagesaa et al[43] de-
scribed the contribution of  bone marrow-derived stem 
cells (BMSs) to liver regeneration. Data in the literature 
increasingly suggest bone marrow as a transplantable 
source of  hepatic progenitors[158,159]. Initial reports of  the 
hepatic potential of  HSCs were later shown to have re-
sulted from fusion between transplanted donor cells and 
resident recipient hepatocytes[48,160]. The authors analyzed 
sex-mismatched bone marrow and liver transplantations 
in rats[42], mice[158] and humans[161], and were able to show 
Y-chromosome-positive hepatocytes as single cells or 
small clusters in the recipients. Adjusted Y-positive hepa-
tocyte and cholangiocyte engraftment ranged from 4% to 
43%, and from 4% to 38%, respectively[160].
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Experimental results: Cantz et al[162] have investigated 
the contribution of  intrasplenic bone marrow transplants 
or in vivo mobilized HSCs to the formation of  hepato-
cytes in normal and injured liver by CCl4. They concluded 
that there is little or no contribution of  BMSs to the 
regeneration of  normal and injured livers in the animal 
models used. Kanazawa et al[163] also demonstrated that 
there is little or no contribution of  BMCs to the replace-
ment of  injured livers (both acute and chronic) in three 
different models, as follows: CCl4 treatment, albumin-
urokinase transgenic mouse, hepatitis B transgenic 
mouse. By contrast, Jang et al[164] reported that transplan-
tation of  a population of  bone marrow purified stem 
cells promoted functional improvement in mice with 
CCl4-induced acute liver injury. Moreover, liver function 
was restored 2-7 d after transplantation. Fibrosis reduc-
tion was also reported in rats with CCl4-induced acute liv-
er injury after bone marrow mononuclear cells transplan-
tation via the portal vein. The general condition of  the 
rats in the treatment group also improved markedly[165]. 
In the study of  Shizhu et al[166] transplanted bone marrow 
mononuclear cells via tail veins of  mice were found to 
populate the damaged liver around the portal and cen-
trolobular regions, and they appeared to differentiate into 
albumin-producing hepatocyte-like cells. Animals that 
received bone marrow mononuclear cells also showed a 
trend toward improved liver enzymes, as well enhanced 
survival rates, relative to controls. 

Clinical results: Although the results of  experiments on 
rodents are conflicting, several clinical trials found that 
BMSCs were beneficial in the treatment of  the patients 
with liver failure. Autologous BMSCs transplantation 
via the portal vein, peripheral vein or hepatic artery into 
patients with cirrhosis, resulted in improvement of  liver 
function tests[167-171]. Clinical studies by Lyra et al[172,173] 
suggested the safety of  autologous bone marrow-derived 
cells through a hepatic artery for chronic liver disease 
patients. In nine patients with alcohol-related cirrhosis, 
the reinfusion of  CD34+ HSCs into the hepatic artery 
was well tolerated and beneficial to liver function[174]. 
However, in the study of  Cauto et al[171], one case of  
dissection of  the hepatic artery and one case of  Tako-
tsubo syndrome occurred as early complications. A pa-
tient developed a cutaneous immunological disorder and 
another patient developed hepatocellular carcinoma 12 
mo after infusion via the hepatic artery. A phase 1 trial 
using BMSCs injected via the hepatic artery after portal 
embolization was prematurely terminated when a patient 
with decompensated cirrhosis died from radio contrast 
nephropathy and hepatorenal syndrome[175]. 

A recent case report described the use of  autologous 
unsorted BMSCs as rescue treatment for hepatic failure 
in a 67-year-old man ineligible for liver transplantation[176]. 
Apparent rapid improvement in hepatic synthetic func-
tion was obtained after the portal venous infusion of  the 
cells. A liver biopsy performed 20 d after cell transplant 

was reported to show increased hepatocyte replication 
around necrotic foci. Salama et al[177] reported that near 
normalization of  liver enzymes was observed in 54% of  
90 patients with end-stage liver disease received GSF for 
five days followed by autologous CD34+ and CD133+ 
stem cell infusion in the portal vein. Similarly, in a phase 
I clinical trial of  five patients with acute on chronic liver 
failure, administering G-CSF and then reinfusing the 
CD34+ cells improved liver function in more than 50% 
of  cases during a 60-d follow-up[167]. The patients receiv-
ing autologous infusion of  mobilized adult bone marrow 
derived CD34+ cells without G-CSF were monitored 
for up to 18 mo, which confirmed the safety of  the pro-
cedure, with beneficial effects lasting around 12 mo[170]. 
Terai et al[169] implemented a clinical trial on nine patients 
with decompensated liver cirrhosis. These patients were 
infused with 5.2 ± 0.63 × 109 autologous bone marrow 
cells from the peripheral vein. At 24 wk after transplanta-
tion, significant improvements were observed.

Peripheral and umbilical blood stem cells
Stem cells derived from cord blood of  human origin 
exhibit higher plasticity than the respective mouse or rat 
cells[178]. Like the BMSCs, cell fusion has been implicated 
as the mechanism by which human cells are seen in the 
recipient’s liver. Some researchers observed cell fusion 
in most cells[179] and some claim no evidence of  cell fu-
sion[180]. Newsome et al[180] demonstrated that human 
umbilical cord-blood (hUCB)-derived cells could differ-
entiate into hepatocytes after transplantation into immu-
nodeficient mice. The percentage of  human, compared 
with mouse, hepatocytes reached an average of  0.011% 
after 16 wk. Kögler et al[181] reported that these somatic 
multipotent stem cells could differentiate into hepato-
cytes after transplantation into a pre-immune fetal sheep 
model. Human hepatocytes constituted as much as 20% 
of  the liver 11 mo after transplantation[182]. 

Experimental results: Intraperitoneal administration 
resulted in a rapid liver engraftment using a model of  
hepatic damage induced by allyl alcohol in nonobese di-
abetic-severe combined immunodeficient (NOD/SCID) 
mice[178]. Hepatocyte-like cells, known as NeoHeps, which 
are derived from terminally differentiated peripheral 
blood monocytes, also seem to be very effective in treat-
ing experimental ALF in Wistar rats[183].

Clinical results: In a clinical trial, 40 patients with HBV-
related cirrhosis were randomized to receive G-CSF 
alone or in combination with the reinfusion of  peripheral 
blood monocytes in the hepatic artery. Over a 6-mo fol-
low-up, significant biochemical and clinical improvement 
was seen in both groups[184]. In a different setting, Gasba-
rini et al[176]. transplanted peripheral blood stem cells into 
a single patient with ALF and showed improvement of  
liver function over 30 d, although the patient eventually 
succumbed to sepsis. 
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CONCLUSION
Although several cell transplantation trials concerning 
different types of  mature or progenitor/stem cells in 
rodents succeeded in improving liver failure, cell trans-
plantation therapies for human liver disorders are still in 
the early stages of  development. Animal models of  small 
animals may not reproduce the clinical syndrome of  LF 
adequately, and trials in large animal models are required. 
Also mechanisms concerning transplanted cell engraft-
ment and proliferation in LF need further analysis. Most 
of  these clinical trials have limitations, being performed 
on small groups of  patients, with no controls and using 
outcome parameters that are easily biased. The current 
inability to track transplanted or infused cells in human 
subjects represents a major challenge in further develop-
ing and understanding stem cell therapies. Clinical trials 
should be planned, with the development of  standard-
ized protocols for standardized procedures to define the 
nature of  cells, the patients enrolled, the transplantation 
procedure and pre-treatment of  the liver, as well as stan-
dard data collection regarding efficacy, and possible side 
effects. The results of  the experiments are promising; 
therefore, cell transplantation therapies should be the first 
choice in the treatment of  acute or end-stage liver failure 
in the near future. 
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