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SIRT1 protein, a member of Silent Information Regulator 2 (Sir2) protein family, have

gained considerable attention as epigenetic regulators for a great area in the human

physiology. Changes in sirtuin expression are critical in several diseases, including

metabolic syndrome, cardiovascular diseases, cancer and neurodegeneration. Here,

we provide an overview of the association of the increasing level of SIRT1 protein for

regulating some disease related conditions such as obesity, cardiovascular diseases

and neurodegeneration. This review also provides a detailed molecular understanding

of the interaction of the some basic molecules with increasing SIRT1 levels rather than

reduction of the SIRT1 expression. In this context, the current approaches to enhancing

the expression of SIRT1 points the importance of epigenetics in several age-related

diseases to provide a healthy aging by developing novel therapies which can prevent

or damp the progression of some diseases.

Keywords: SIRT1 expression, oxidative stress, metabolic diseases, cardiovascular diseases, neurodegenerative

diseases

INTRODUCTION

Sirtuin 1 (SIRT1) which is encoded by the SIRT1 gene is the most conserved mammalian
nicotinamide adenine dinucleotide (NAD+) dependent histone deacetylase (1). Besides its role
being a target for histone and non-histone proteins, SIRT1 functions as a transcription factor
for many different physiological processes (2). According to the previous experiments which were
performed using yeast, worms and flies asmodel organisms, sirtuins were accepted as evolutionarily
conserved epigenetic mediators of longevity (3–5). In addition to the key role on extending life by
regulating the response to some conditions such as fasting, caloric restriction and exercise, SIRT1
regulatesmany endocrine functions, protects organism from oxidative stress-related cellular events,
promotes DNA stability, and decreases various age-related disorders, such as neurodegenerative
disease, metabolic abnormalities, and cancer (6–9).

SIRT1 protein is expressed in most of the body parts including brain, heart, kidney, liver,
pancreas, spleen, skeletal muscle, endothelial tissue and white adipose tissue. By expression
and activation of SIRT1, modulation of its downstream pathways occurs by targeting several
cellular proteins, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB), peroxisome proliferators-activated receptor-gamma (PPAR-γ) and its coactivator peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), protein tyrosine phosphatase
(PTP), forkhead transcriptional factors (the FoxO subgroup), adenosine monophosphate activated
protein kinase (AMPK), CRE-binding protein regulated transcription coactivator 2 (CRTC2),
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endothelial nitric oxide synthase (eNOS), p53, myogenic
differentiation (MyoD), liver X receptor (LXR), and transcription
factor E2F1 (10, 11). Through its deacetylation activity, SIRT1
modulates functions of these critical molecules and shows its
critical and multifaceted roles in cellular physiology (Figure 1).

Alterations of the level of SIRT1 expression were
determined in several diseases including metabolic diseases,
neurodegenerative diseases, cancer and aging. Whereas an
increase in the expression of the SIRT1 protein was observed in
cancer (12, 13), reductions in the SIRT1 level was more common
in other diseases such as Alzheimer’s Diseases (AD), Parkinson
Disease (PD), obesity, diabetes, and cardiovascular diseases
(14–18). Recent developments elucidated the relation between
downregulation of SIRT1 levels and disease progression as an
increase in the oxidative stress and inflammation (16, 17). For
example, due to a significant decrease in SIRT1 levels which
correlated with an increase in the oxidative stress parameters,
accumulation of Tau proteins in AD, enhancement of acetylated
p53 expression levels in coronary artery disease and increase in
the fatty acid oxidation in obesity were observed in the patients
(15, 17, 19, 20).

Previous studies showed that SIRT1 overexpression
significantly increased cell viability, decreased cell apoptosis and
reduced the release of pro-inflammatory cytokines (21–24). In
addition, the regulation of metabolism and longevity by SIRT1
occurs through controlling the maturation of hypothalamic
peptide hormones (25, 26). Specificity for SIRT1 increases in
the relevant metabolic pathways in the hypothalamic circuitries
which is also associated with altered downstream factors of
SIRT1 such as FoxO transcription factors (27, 28). In the light
of this information, we reviewed recent findings related to the
association of the increasing level of SIRT1 protein rather than
reduction of the SIRT1 expression and regulation of some disease
related conditions such as obesity, cardiovascular diseases and
neurodegeneration. The overarching aim of this paper is to
provide a basis for hypothesizing that the level of SIRT1 are
mechanistically increased to overcome the dysfunction of SIRT1
activity in the diseased conditions.

SIRT1 AND METABOLIC DISEASES

SIRT1 protein protects the functions of adipose tissue and liver
in several aspects (29, 30) such as glucose homeostasis and fat
metabolism against severe obesity (31, 32). It is also involved
in energy balance and stress. Insulin sensitivity is increased in
the pancreatic beta cells which have insulin resistance due to
overexpression of SIRT1 (30, 33). The activity of PPARγ which
have a role in the storage of glucose and fatty acid in adipose
tissue is repressed by SIRT1 (34). During short term fasting, the
CRTC2 is also depressed by SIRT1 and thus gluconeogenesis
is declined in the liver tissue. During long term fasting, SIRT1
expression deacetylates and activates the PGC-1α to decrease
adiposity and lipogenesis and to increase fatty acid oxidation (35–
37). In addition, SIRT1 deacetlylates sterol regulatory element
binding protein (SREBP), farnesoid X receptor (FXR), as well as
liver X receptor (LXR) to increase bile acid production and to

reverse cholesterol transport (30, 38). Thus, SIRT1 can be called
as a “MasterMetabolic Regulator” (30). Indeed, the dysregulation
of energy sensing may cause inflammation and insulin resistance.
Because of prevention of pro-inflammatory responses, SIRT1
behaves as a positive regulator of insulin in the adipose tissue
(39). In one of the recent study, after feeding with high dietary
fructose, the liver of rats were investigated in response to SIRT1
expression as a main energy sensing protein (40). However,
they demonstrated a significant increase in the SIRT1 expression
in the fructose-induced inflammation suggesting compensatory
rise in the level of SIRT1 to decline the inflammation-related
metabolic reactions (40). In addition, overexpression of SIRT1
in obesity which was formed by high-fat diet protects lipid-
induced inflammation and hepatic steatosis while providing
better glucose tolerance (41). These favorable effects of SIRT1
may be related with the activation of the antioxidant enzymes and
stimulation of PGC1α to decrease the level of pro-inflammatory
cytokines (41).

In some neurodegenerative diseases, a number of
neuropeptide systems in the hypothalamus are affected from
activity of SIRT1 which indicate an impact on metabolism.
For example, SIRT1 upregulates the level of orexin receptor
specifically in the lateral hypothalamic area and the ventromedial
nucleus of the hypothalamus, whereas the expression of
orexin and melanin-concentrating hormone is reduced in the
hypothalamus due to inhibition of the active state of orexin
neurons (25, 42, 43). In addition, SIRT1 also regulates the
expression of BDNF in the brain. It was found that increased
SIRT1 level diminished BDNF signaling which resulted in severe
hyperphagia and obesity both in humans and animals (44, 45).
These results showed that compensatory increase in the SIRT1
level to cope with the disease outcomes such as oxidative stress
brings some additional metabolic dysfunctions in the body due
to altered peptides in the endocrine system.

In addition to the obesity, SIRT1 has a role in the
hepatic energy metabolism by modulating it nutritionally and
hormonally. This modulation is mostly occurred through the
deacetylation of metabolic regulators (46). Previous studies also
showed that obese patients with non-alcoholic fatty-liver disease
(NAFLD), which is the most common liver disease caused by
elevated hepatic lipids, inflammation and oxidative stress, had
high plasma levels of SIRT1 producing a potential against the
physiological mechanisms related to NAFLD (47). In this type
of disease, the action mechanism of SIRT1 acted through the
modulation of PPARα activity and fatty acid oxidation (48).

On the other hand, it was found that increase in the
SIRT1 activity upregulates genes-related metabolic functions,
promotes insulin sensitivity and reduces inflammatory gene
expressions in the adipose tissue of diet-induced obese animals
(49). In addition, we found a polymorphism in the promoter
region of SIRT1 gene in obese children drawing attention to
the association between altered SIRT1 activity and the risk of
obesity (50). Previous reports also showed the protective role
of SIRT1 on the development of osteoarthritis by upregulation
of cartilage extracellular matrix genes and downregulation of
matrix-degrading enzymes (51, 52). In addition, increase in the
SIRT1 activity had a protective effect against osteoarthritis in
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FIGURE 1 | The most studied targets of SIRT1 in the metabolic diseases, age-related diseases and cardiovascular diseases.

animal models (53, 54). Therefore, the investigators suggested
that the increase both in the activity and expression of SIRT1
might be a protective strategy for progression of osteoarthritis via
the modulation of the NF-κB pathway (55).

SIRT1 AND AGE-RELATED
NEURODEGENERATIVE DISEASES

The relationships between SIRT1 and age were investigated in
the previous studies related to interaction of lifespan elongation
and calorie restriction which is thought as an enhancer for SIRT1
activity (56, 57). Most of these studies showed that calorie intake
restriction innervates the extension of life by the inducement of
defense of cells against to free radicals and toxins for attenuation
of apoptosis or amelioration of cell repair which are desired
factors in aging (58–60). That means, altered SIRT1 expression
and activity is thought to be a potent way to keep the cells
and organs properly functioning for longer times. The positive
correlation between age and SIRT1 expression and/or activity
may be a compensation against unexpected situations such as
oxidative stress (61, 62). For example, in one of our previous
study, it was noted higher level of SIRT1 protein in older people
compared with the SIRT1 level in the younger people (62). It was
thought that increased protein level of SIRT1 in older people may
be a compensatory mechanism due to accumulation of oxidative
stress-related products and elimination of antioxidant enzyme
level in elderly (62). However, increase in the expression does
not mean increase in the activity of protein. An oxidative stress-
dependent decrease in the SIRT1 activity was noted in aged
animals that had high levels of SIRT1 protein (63, 64). The decline
in the activity of SIRT1 may not be related directly with SIRT1
protein but also its downstream or upstream molecules such as a
decline in NAD+ levels with aging (65).

One of the main risk factor for several neurodegenerative
diseases such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD) is age. The common underlying mechanisms
of neurodegeneration are increase in the neuroinflammation,
mitochondrial damages and oxidative stress (66, 67). In literature,
it was shown that sirtuins’ hyperactivity could reduce these
negative outcomes both in vivo and in vitro due to its
neuroprotective role (68–71). In the AD pathology, SIRT1
deacetylates substrates in favor of the non-amyloidogenic
pathway or acts directly on the Aβ and Tau proteins (72).
Molecular studies showed that SIRT1 activation prevents the
accumulation of Aβ plaques and tau pathology through the
NF-κB signaling pathway by upregulation of the ADAM10
gene, induction of the Notch pathway, and inhibition of the
mTOR pathway (20, 73, 74). As shown in previous studies,
SIRT1 epigenetically reprograms inflammation taking about
AD formation at the earlier stages by altering transcription
factors (24, 75, 76). In addition, it was observed that brains
of AD patients have consistently reduced NAD+ levels and
SIRT1 transcription and/or protein levels involved in chronic
inflammation that can also be altered by increased levels of the
activated proinflammatory transcription factor NF-κB (77–79).
In one of our studies, we found a significant increase in the SIRT1
level of dementia patients (80). Furthermore, in the patients
with Huntington’s disease (HD), Baldo and his colleagues found
higher expression of SIRT1 protein level in the most affected
brain regions, especially hypothalamic regions important for
metabolic regulation, compared to brain regions which were less
affected from the mutant huntingtin protein (28). In PD, SIRT1
inhibits α-synuclein aggregation by deacetylating proteins such
as heat shock proteins and PGC-1α and, therefore, it protects
dopaminergic neurons against cell death which occur due to the
formation of insoluble fibrils called Lewy bodies (81, 82). In the
in vitro PD model, it was observed that an overexpression of
SIRT1 due to application of toxin (rotenone or MPTP) which
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causes neurodegeneration was rescued cells from oxidative stress
(16, 83). The neuroprotection against to PD occurred by the
mechanism of decreasing in the expression of NF-κB and cleaved
PARP-1. In a postmortem study, the levels of SIRT1 showed a
slight increase in the dementia patients with Lewy bodies (16, 83).
However, as seen in the AD, the activity of the SIRT1 protein
also decreased in the PD patients producing neurodegeneration
in correlation with possible higher oxidative stress, synaptic and
cell loss, and neuroinflammation (16).

We thought that the high levels of SIRT1 protein might
have a role in alleviating the oxidative stress that is significantly
increased in neurodegeneration because an induction of the
SIRT1 expression occurs when the organism encounters a
biological stress such as aging or an age-related disorder due to
the role function of SIRT1 as an important stress sensormolecule.

Also, in literature, it was stated that high levels of SIRT1
may increase the expression of genes related to neuronal
protection (84–86). On the other hand, SIRT1 behaves as
a double edged sword in response to inflammation which
is a cause of neurodegeneration. That means, low levels of
SIRT1 cause early acute inflammation-related damages to tissues
by increasing NF-kB, and high levels of SIRT1 during late
inflammation cause immunosuppression and increased the rate
of death (87). In a previous study, investigators observed that
increase in the expression level of SIRT1 cannot protect the
brain from neurodegeneration without increasing the activity
level of SIRT1. For example, Ciriello and his colleagues observed
a significant decrease in the level of phosphorylated SIRT1,
the active form of SIRT1, in the patients with multiple
sclerosis (88). Interestingly, a significant negative correlation
between phosphorylated and non-phosphorylated forms of
SIRT1 was observed explaining both the SIRT1 overexpression
and inactivity of SIRT1 in diseased state. In addition, when
a SIRT1-activating molecules were given to the organisms,
profound therapeutic benefits and neuroprotective effects were
recorded against age-dependent neurodegenerative diseases
(89).

SIRT1 AND CARDIOVASCULAR DISEASE

Nowadays, the sirtuin protein family is thought as one of the
important target for cardiovascular diseases (CVD). Therefore,
the role of SIRT1 protein and its downstream molecules also
gains importance in the experimental studies related with
CVD development. In cardiomyocytes, during prenatal period,
SIRT1 is found in the nucleus, however, it is mostly located
in the cytoplasm of myocytes of adult heart of rodents (90).
Previously, we found that the level of the SIRT1 expression
was significantly higher in the CVD patients compared to
the levels of SIRT1 in healthy subjects pointing the cross-
talk between SIRT1 protein expression and reactive oxygen
species (61). In this previous study, we also found a significant
increase in the oxidative stress parameters which may be an
inducer for SIRT1 expression. In cardiomyocytes, myoblast gains
resistance against to oxidative stress by increasing expression

of nuclear SIRT1 protein. To do produce this antioxidative
activity, SIRT1 protein enhances the level of MnSOD expression
through p53 deacetylation (90). In addition, activation of FoxO1-
dependent oxidative pathway by overexpression of SIRT1 protein
is another regulatory way of protection of cardiomyocytes from
oxidative stress (91). By the help of this pathway, cardiac infarct
volume is reduced to ameliorate and recover cardiac function
after ischemia/reperfusion in mice (92). It is also thought that
transcriptional activity of NF-κB protein, a preconditioner in
cardiac ischemia, is inhibited by SIRT1 protein to promote cell
protection (93, 94). In literature, it was reported that the activity
of SIRT1 protein is directly or indirectly controlled via the JNK1-
SIRT1 link by accumulated oxidative stress which is caused
by an increase in the ROS level due to aging or age-related
diseases enzyme (1). It was demonstrated that ROS inhibited
JNK phosphatases which activated the JNK1 to phosphorylate
SIRT1 (95, 96). Furthermore, this phosphorylation increased the
activity of SIRT1 resulting its translocation into the nuclei (97).
Alcendor et al. (91) noted that the rate of SIRT1 overexpression
had two-sided action in the cardiovascular system. For example,
2.5- to 7.5-fold increase in the SIRT1 expression attenuated
apoptosis, the symptoms of cardiac dysfunction, age-related
cardiac hypertrophy and expression of senescence markers. On
the other side, 12.5-fold increase in the expression of SIRT1
resulted in increased cardiac hypertrophy due to oxidative stress
and apoptosis. This study explained clearly the relation between
oxidative stress and overexpression of SIRT1 to the pathological
levels in CVD patients. In one of our previous studies (61), we
found a positive correlation between total antioxidant level and
SIRT1 level in CVD patients. Therefore, we can conclude that the
increase in the SIRT1 level may be a compensatory mechanism
to increase the antioxidants against oxidative stress in CVD
patients.

Contrary to some previous studies (98, 99), the SIRT1 level
significantly decreased approaching to control values in the CVD
patients receiving statin therapy (100). The decline in the SIRT1
level by statins can be explained by the statins’ inducement effect
on PPARγ activity to protect patients against the progression
of atherosclerosis (101). On the other hand, PPARγ inhibits
SIRT1 expression at the transcriptional level which interrupting
compensatory action of increased SIRT1 expression (102).

CONCLUSION

Recent studies have shown that age-related diseases or endocrine
system dysfunctions are associated with an increase in SIRT1
expression levels, but with a decrease in their activity. The
oxidative stress produced during these processes may lead to
compensatory or protective increase in the SIRT1 expression to
deal with the decline of the SIRT1 activity.
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