Khan, IMRANKhan, FahadFarooqui, ArshiAnsari, Irfan A.2021-04-102021-04-102018-01-01Khan I., Khan F., Farooqui A., Ansari I. A. , -Andrographolide Exhibits Anticancer Potential Against Human Colon Cancer Cells by Inducing Cell Cycle Arrest and Programmed Cell Death via Augmentation of Intracellular Reactive Oxygen Species Level-, NUTRITION AND CANCER-AN INTERNATIONAL JOURNAL, cilt.70, sa.5, ss.787-803, 2018http://hdl.handle.net/20.500.12645/28720Andrographolide, a diterpenoid lactone and a major constituent of Andrographis paniculata Nees, exhibits remarkable anticancer activity. However, the effect of andrographolide on colon cancer has not been completely elucidated yet. Thus, we investigated the chemopreventive potential of andrographolide in colon cancer HT-29 cells. The cytotoxic potential of andrographolide on HT-29 cells was determined by MTT assay, trypan blue exclusion assay, colony formation assay, and morphological analysis; and apoptotic property by DAPI and Hoechst staining, FITC-Annexin V assay, DNA fragmentation assay and caspase-3 activity assay. To elucidate andrographolide action, intracellular reactive oxygen species (ROS) level was determined by DCFDA dye; change in mitochondrial potential by Rhodamine123 and Mito Tracker Red CMXRos dye; and cell cycle modulatory property by flow cytometric analysis. Results of the study have shown that andrographolide decreased cell viability of HT-29 cells in a dose- and time-dependent manner. Furthermore, andrographolide induced apoptosis in HT-29 cells which seemed to be linked with augmented intracellular ROS level and disruption of mitochondrial membrane potential. Interestingly, andrographolide caused significant cell cycle arrest in G2/M phase at lower doses, but, in G0/G1 phase at higher doses. In summary, our results indicated that andrographolide exhibited antiproliferative and apoptotic properties against colon cancer HT-29 cells.Andrographolide Exhibits Anticancer Potential Against Human Colon Cancer Cells by Inducing Cell Cycle Arrest and Programmed Cell Death via Augmentation of Intracellular Reactive Oxygen Species LevelArticleWOS:0004377227000098504721360110.1080/01635581.2018.1470649