Vol.:(0123456789)1 3 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 https://doi.org/10.1007/s00405-023-07830-3 REVIEW ARTICLE Speech auditory brainstem response in audiological practice: a systematic review Meliha Basoz Behmen1  · Nilsu Guler1  · Elif Kuru1  · Nilufer Bal1  · Ozge Gedik Toker1 Received: 25 December 2022 / Accepted: 7 January 2023 / Published online: 18 January 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023 Abstract Background Speech-ABR is an auditory brainstem response that evaluates the integrity of the temporal and spectral coding of speech in the upper levels of the brainstem. It reflects the acoustic properties of the stimulus used and consists of seven major waves. Waves V and A represent the onset of the response; wave C transition region; D, E, and F waves periodic region (frequency following response); and wave O reflects the offset of the response. Purpose The aim of this study is to evaluate the clinical availability of the speech-ABR procedure through a literature review. Methods Literature search was conducted in Pubmed, Google Scholar, Scopus and Science Direct databases. Clinical studies of the last 15 years have been included in this review and 60 articles have been reviewed. Results As a result of the articles reviewed, it was seen that most of the studies on speech ABR were conducted with children and young people and generally focused on latency analysis measurements. Most used stimulus is the /da/ syllable. Conclusions Speech ABR can objectively measure the auditory cues important for speech recognition and has many clini- cal applications. It can be used as a biomarker for auditory processing disorders, learning disorders, dyslexia, otitis media, hearing loss, language disorders and phonological disorders. S-ABR is an effective procedure that can be used in speech and language evaluations in people with hearing aids or cochlear implant. It may also be of benefit to the aging auditory system's ability to encode temporal cues. Keywords Speech ABR · Speech evoked auditory brainstem response · S-ABR · Central auditory processing Introduction Neural encoding of speech sound begins in the auditory nerve and travels to the auditory brainstem. Recording of auditory brainstem responses (ABR) has been recognized as a valid and reliable tool to assess the integrity of neural transmission of acoustic stimuli [1]. When verbal stimuli are used in the ABR assessment, potential information can be obtained about how the verbal stimulus is processed in the brainstem and which structures are involved in this pro- cess. Speech Auditory Brainstem Response (speech-ABR/ s-ABR) is electrophysiological potentials that reflect the onset, displacement, and periodicity of the stimulus [2]. In speech ABR protocols, syllables consisting of various con- sonant and vowel combinations (CV) are used as stimuli [3]. Commonly used CV (consonant–vowel) stimuli are 40 ms or 170 ms /da/, /ba/, and /ga/ [2]. The spectral distributions of brainstem responses to these syllables are different [3]. Speech ABR represents the acoustic properties of the con- sonant (temporary component) and vowel (periodic compo- nent) in the stimulus and reflects neural encoding [1, 3, 4]. The computer-synthesized /da/ syllable designed by Nina Kraus is the best known and frequently used s-ABR stimu- lus [3, 5]. After stimulation with the /da/ combination, a response occurs, characterized by seven wave peaks, desig- nated V, A, C, D, E, F, and O waves, respectively [1, 3, 6]. Figure 1 shows the s-ABR responses evoked by the 40 ms * Elif Kuru ekuru@bezmialem.edu.tr Meliha Basoz Behmen mbasoz@bezmialem.edu.tr Nilsu Guler nillgulerr@gmail.com Nilufer Bal nibal@bezmialem.edu.tr Ozge Gedik Toker ogedik@bezmialem.edu.tr 1 Department of Audiology, Health Sciences Faculty, Bezmialem Vakif University, Istanbul, Turkey http://crossmark.crossref.org/dialog/?doi=10.1007/s00405-023-07830-3&domain=pdf http://orcid.org/0000-0002-6753-5515 http://orcid.org/0000-0002-7433-1051 http://orcid.org/0000-0002-4866-4514 http://orcid.org/0000-0002-1560-8882 http://orcid.org/0000-0003-1315-9080 2100 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 /da/ syllable and its similarity to the acoustic properties of the stimulus. S-ABR responses can be analyzed in two parts. The temporal part consists of V, A, C, O waves and contains responses to the acoustic filter properties of the syllable. Waves V and A appear with the onset of the consonant and reflect the onset of the stimulus. It occurs in the first 10 ms and is similar to the click stimulus auditory brainstem response. The negative C wave reflects the consonant-to- vowel stimulus transition region. Continuous part consists of D, E, and F waves and is called the Frequency Follow Response (FFR). The FFR reflects the harmonic nature of the stimulus and records phase-locked neural activity to peri- odic information within the stimulus. The negative O wave is the response to cessation, and it reflects the offset of the stimulus [1, 3, 7, 8]. The ascending auditory pathways between the cochlear nerve and the midbrain are predominantly active in the gen- eration of waves in the temporal part. More specifically, the V–A complex reflects auditory processing in the upper part of the brainstem [7, 8]. Although the FFR is produced from many brainstem regions, including the cochlear nucleus, superior olivary complex, lateral lemniscus, and inferior colliculus, the main generating region is the inferior col- liculus [7]. In spectral analysis measurements, the F0 (fundamental frequency) wavelength corresponds to the time between the D, E, and F waves. F0 contains non-linguistic information, such as gender and emotion. The range of small, higher fre- quency fluctuations between these waves corresponds to the F1 (first formant) frequency of the stimulus. F2 (second for- mant) is an important acoustic cue to identify linguistic con- tent. However, F2 and higher formants in the /da/ stimulus are beyond the phase locking limit of the rostral brainstem [1, 9]. The most frequently used parameters in S-ABR pro- tocols are specified as under the control of BioMARKTM software, alternate polarity, 10.9/ms rate, 70–85 ms analy- sis window, 60–85 dB SPL stimulus intensity, monaural stimulation, and 4000–6000 sweeps. During the test, the patient should remain quiet and relaxed, so the patient may be allowed to watch a movie with reduced volume or sub- titles [5]. Latency (ms) measurements are about the sensitivity to which brainstem nuclei respond simultaneously to acous- tic stimuli; amplitude (µV) measurements give information about how strong the response of brainstem nuclei to acous- tic stimuli. The slope (µV/ms) and area (µV × ms) values of the VA complex are calculated by measuring the latency and amplitude of the VA complex. VA complex measurements provide information about the timing of neuronal discharges [10]. It is known that the test is indicated for neurological and mental conditions and changes in hearing, language, and learning [11]. S-ABR could potentially reflect higher order auditory functions and the effects of dysfunctions on the lower brainstem [12, 13]. Understanding the neural process- ing of speech sounds at the brainstem level provides insight into the central auditory processes involved in normal hear- ing subjects as well as in clinical populations [11]. S-ABR seems well-suited to provide objective physiological infor- mation about speech coding in the auditory pathway, espe- cially in populations with known defects at the perceptual and cognitive levels [2]. The aim of this study is to put together clinical studies and results on speech ABR through a review of the literature of the last 15 years, and ultimately to evaluate the clinical usability of s-ABR. Methods Literature review was conducted in Pubmed, Google Scholar, Scopus and Science Direct databases for “speech ABR”, “ABR-speech”, “speech evoked ABR”, “speech evoked auditory brainstem response”, “speech evoked audi- tory brainstem responses”, “speech stimuli ABR”, “speech stimulus ABR”, “ABR types”, “s-ABR” keywords. Inclusion criteria are studies of the last 15 years, writ- ten language in English, human studies, clinical studies in individuals with normal peripheral hearing, pathologies affecting the hearing system, cochlear implant or hearing aid users. There is no restriction on age groups in this study. The exclusion criteria are animal studies, the lack of written language in English, literature reviews, case studies, thesis studies, studies on s-ABR parameters, studies on factors affecting s-ABR, studies on s-ABR neural regions. 7774 search results and 1662 studies on s-ABR were found. The titles and abstracts of 332 articles were read and 272 of them were eliminated. 60 articles that met the inclu- sion criteria were reviewed. The article selection process is shown in Fig. 2. Fig. 1 Display of 40 ms /da/ stimulus (gray) and responses (black) [3] 2101European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Results The table summarizing the reviewed articles (Appendix 1) is given in the appendices. Speech‑ABR in normal hearing In s-ABR studies in typically developing children and adults with normal peripheral hearing, waves were found to be reli- ably present in all subjects [14–23]. Sanfins et al., obtained wave analysis measurements with 40 ms /da/ stimulus in children and adolescents whose native language is Brazil- ian Portuguese, similar to adults [19]. Karawani and Banai obtained responses in native Arabic and Hebrew adults con- sistent with other studies and reported that brainstem pro- cessing of the /da/ syllable did not differ between English speakers and speakers of Semitic languages, such as Arabic and Hebrew [17]. Lee and Han found that syllabic stimuli formed with 9 Korean explosive consonants have a clear and distinguishable morphology, but the wave latencies are slightly longer than those for the /da/ stimulus [16]. Results obtained from studies using the /da/ syllable are generally consistent with each other [15, 17, 19, 24]. Only Sanfins et al., reported different latency values with the /da/ syllable in children and adolescents whose mother tongue is Italian [25]. Pinto and Martinelli obtained wave morphology like adults in neonates with normal hearing and no auditory risk factors but observed longer latency and greater amplitude variation in the waves analyzed. While V, A waves and VA complex were obtained in all newborns, D, E, F waves were obtained in more than 88% and C waves in only 75% [24]. Vander Werf and Burns observed that the amplitudes of the s-ABR onset and offset components were signifi- cantly reduced and the F, O wave latencies were prolonged in elderly individuals. He also reported that the amplitude and morphology of the waves are slightly more variable in older individuals, and that the C wave may not be identified even when other waves are reliable [26]. Based on these, it is thought that s-ABR may provide information about the ability of the aging auditory system to encode temporal cues [26]. In comparisons of click and s-ABR in typically devel- oping individuals, s-ABR wave latencies were found to be longer than those obtained in click-ABR [14, 15, 24]. Karawani and Banai found a correlation between click-ABR and s-ABR V, A waves [17]. Pinto and Martinelli reported that speech stimulus latency in newborns is longer than click stimulus, but the responses are very similar [24]. Fig. 2 Flowchart of articles through screening and selection process 2102 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Sinha and Basavaraj and Rana and Barman observed that the amplitude of the fundamental frequency F0 is greater than F1 in their spectral analysis measurements [15, 23]. It has been reported that the fundamental frequency has a greater energy, better phase locking, and is coded more robustly than its harmonics [15]. S-ABR test–retest studies show that responses are reli- able and reproducible over months [18, 20, 21]. Hornickel et al. reported that s-ABR responses in typically developing children were reproducible and consistent over one year of growth [20]. Zakaria and Jalaei observed that there was no significant difference in latency, amplitude, and VA complex measurements between the two sessions in children tested at a lower intensity level (30 dB SL) 3 months apart [21]. Song et al. achieved a high degree of test–retest reliability for s-ABR responses recorded with the /da/ stimulus in quiet and noisy conditions [18]. It has been reported that the inclusion of the S-ABR test in the clinical battery with OAE (otoacoustic emis- sion) tests may be more effective [22, 23]. Dhar et al. found that DPOAE (distortion product OAE) is correlated with s-ABR harmonics, envelope boundary and spectrotempo- ral directions [22]. Rana and Barman reported a correlation between TEOAE (transiently evoked OAE) and s-ABR onset responses [23]. Lotfi et  al. and Moossavi et  al. reported that s-ABR responses recorded in the presence of contralateral noise in individuals with normal hearing can enable to evaluate the performance of the rostral part of the auditory efferent system [27, 28]. Speech‑ABR in auditory processing disorders The S-ABR has proven to be a valid method for assess- ing brainstem auditory function in individuals with audi- tory processing disorder (APD) [12, 29–32]. Rocha-Muniz et al. observed that 23 of 27 children with abnormal s-ABR responses had APD and reported that a child with abnormal s-ABR responses had an 85.15% probability of observing an abnormal behavioral assessment of auditory processing [30]. The s-ABR can make a clear distinction between children at risk for central APD (CAPD) and typically developing children [31]. Children with CAPD have great difficulty distinguishing stimuli based on temporal cues [32]. Studies have found that abnormalities are mostly in the temporal part [12, 29–32]. Kumar and Singh observed weak wave morphology, prolonged V and A wave latencies, decreased V/A slope, high Biomark scores and decreased F1 amplitude in children at risk for CAPD without reading disorders [31]. Flippini and Schochat found prolonged V, A waves and VA complex latencies, low A, C, F waves amplitude, and low V/A slope [29]. Rocha-Muniz et al. observed prolonged V, A latencies, too and reported 68% specificity, 80% sensitiv- ity, and 74% accuracy for wave A latency in children with APD [12]. Filippin et al. found that the latencies of children with APD increased in the presence of background noise com- pared to the quiet environment, and the wave latencies in the background noise decreased after 8 weeks of formal auditory training. This study shows that the effectiveness of auditory training can be evaluated by s-ABR recorded in background noise [33]. Speech ABR in language disorders, phonological disorders and stuttering In studies, children with Language Disorders (LD) showed abnormalities in both temporal and spectral frequency encoding measures [32–34]. Individuals with CAPD have more widespread impairment and have additional difficulty distinguishing speech harmonics [32]. Rocha-Muniz et al. observed prolonged V, A, C, E, F, O wave latencies and dou- ble peaks for the wave A [32]. Gabr and Darwish reported prolonged A, C, D, E, F, O wave latencies, decreased ampli- tudes, and prolonged VA complex latency, decreased VA amplitude and slope [34]. Rocha-Muniz et al. evaluated the sensitivity of s-ABR and reported the highest sensitivity values in children with LD [12]. S-ABR is considered an easy, fast, reliable and pro- cedure that allows for the early diagnosis and intervention of language disorders [34]. Filippin et al. observed a prolonga- tion of latencies and a decrease in amplitudes in the pres- ence of background noise in children aged 7–13 with LD, while they observed a decrease in latencies and an increase in amplitudes after 8 weeks of auditory training. This study demonstrates that the s-ABR procedure recorded in the pres- ence of background noise can be used to evaluate auditory training effectiveness in children with LD [33]. Children with phonological disorders (PD) have func- tional impairment in speech processing in the brainstem region and changes in the physiological mechanisms of speech [35, 36]. Gonçalves et al. found weaker morphol- ogy and prolonged latencies for V and A waves in children with PD [35]. El-Beltagy et al. observed a prolongation of transient and permanent part latencies, while obtaining well- defined and reproducible responses [36]. There are no abnor- malities in wave amplitudes and VA measurements [35, 36]. Gonçalves et al. revealed that the sensitivity of detecting phonological disorders for s-ABR is 56% and the specificity 2103European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 is 94%. He reported that abnormal coding of speech sounds may be a biological marker of phonological disorders but cannot identify the biological origins of phonological prob- lems [35]. El-Beltagy et al. reported that cortical auditory processing can be evaluated with s-ABR and MMN in these children [36]. It has been reported that children and adults who stut- ter have insufficient neural encoding for temporal features in the early stages of the auditory pathway, and this may be the reason for their inability to speak fluently [37, 38]. Tahaei et al. observed latency prolongations in onset and offset waves and reduced VA slope for s-ABR in Persian native stuttering adults [37]. Crivellaro Gonçalves et al., on the other hand, found that especially the C wave and VA complex latency were prolonged, and the amplitude of the VA complex increased in stuttering children whose native language was Brazilian Portuguese [38]. No abnormality was observed in spectral analysis measurements [37, 38]. Speech ABR in learning disorders and dyslexia Inadequate encoding of speech signals in the brainstem has been reported in children with language-based learn- ing problems [39–43]. In addition, weakened correlation between the brainstem and auditory cortex have been found in such children [39]. The s-ABR is an effective tool to iden- tify underlying auditory processing difficulties in children with learning disabilities and may be helpful in early inter- vention [41]. Malayi et al. compared click ABR and s-ABR responses in children with learning disabilities (LD) and reported delays in both the click and s-ABR temporal components for children with LD [42]. In contrast, Song et al. reported that click and s-ABR reflect separate neural processes, and that only processes related to encoding complex signals, such as speech, are impaired in children with LD [43]. In both stud- ies, prolongation was observed especially in the latency of V, A waves and V–A complex [42, 43]. Ghannoum et al. found prolonged latency for V, A, F, C, D waves and decreased amplitudes for D, E, C, F waves in children with LD com- pared to normal children [40]. Sachin et al. reported prolon- gation of V, B, E wave latencies and decreased V, B, C, D, E wave amplitudes [41]. In a study by Billiet and Bellis it was shown that 37.5% of children with dyslexia have abnormal brainstem timing with s-ABR. Children with dyslexia with abnormal brainstem timing have prolongation of all s-ABR wave latencies and abnormal VA slope [44]. Kouni et al., in a study conducted with sequential /ba-ba/ stimulus in native Greek-speaking adults with dyslexia, prolonged A and C wave latencies and A–C interwave latency were obtained [45]. Kouni et al. used the /ma/ stimulus to assess young adults with dyslexia and obtained longer-than-normal latency for initial responses [46]. In addition, Kouni et al. reported that latency prolonga- tion in adults with dyslexia is greater than that in individuals with other learning disabilities [45]. Billiet and Bellis found that six children with abnormal s-ABR responses did not meet the diagnostic criteria for CAPD in their study which they evaluated the central audi- tory function with behavioral tests of dyslexic children with normal and abnormal s-ABR responses. Therefore, they reported that the s-ABR can identify a subset of children who do not meet the diagnostic criteria for CAPD with behavioral tests of central auditory assessment but could benefit from auditory-based intervention approaches and should be included in the central auditory test battery [44]. On the other hand, Hornickel and Kraus revealed that poor readers have more variable s-ABR responses than aver- age and good readers, and this is a biomarker of dyslexia [47]. Speech ABR in autism spectrum disorder and attention deficit hyperactivity disorder Poor neural synchronization in speech stimulus process- ing has been observed in studies of children with autism spectrum disorder (ASD) [48–51]. In general, subcortical transcription of voice is widely impaired in these individuals [50]. Ramezani et al. and Russo et al. reported that children with ASD obtained prolonged latencies for all s-ABR waves, although normal ABR responses were present with a click stimulus. Although it was observed that the initial waves (V, A) and the offset wave (O) had longer latency, generally no abnormality was observed in the spectral analysis meas- urements and wave amplitudes [48, 50]. Russo et al. found significantly prolonged D and F wave latencies in silence and reduced amplitude for the F wave in background noise in s-ABR assessment in quiet and background noise [50]. Kamita et al., on the other hand, obtained a shorter wave V latency in those with ASD and stated that the initial part of the verbal stimulus may have faster neural encoding, which may cause hypersensitivity to complex sounds, such as speech. Other wave latencies and VA measurements are not abnormal [49]. Chen et al. reported that the V wave latency was short- ened significantly, and the amplitudes of the A and C waves increased, in the s-ABR evaluation they performed in two different time periods (10 months apart) in preschool chil- dren with ASD. While the V and A wave latencies were 2104 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 longer in the first test, it was observed that the F wave latency was prolonged, and the E wave amplitude decreased in the second test. This study also showed that subcortical level auditory processing in children with ASD is impaired and still immature compared to typically developing children of the same age [51]. It is thought that abnormal speech pro- cessing at the brainstem level may have a significant effect on language impairment in preschool children with ASD. It has been reported that s-ABR can be used as an objec- tive tool for evaluating children's language performance and the effectiveness of auditory rehabilitation programs in this patient group [48, 51]. It has been emphasized that children with attention defi- cit hyperactivity disorder (ADHD) may have problems in auditory brainstem timing and information processing in the cortex [52, 53]. Azzam and Hasan revealed that 87% of children with ADHD have abnormal s-ABR responses. In particular, the V, A, C, and VA complex latencies of the initial responses are significantly prolonged, but there is no abnormality in the wave amplitudes [52]. Jafari et al. observed prolonged latencies for the A, D, E, F, O, and VA complex in children with ADHD [53]. Azzam and Hasan achieved abnormal ABR responses to the click stimulus in only 33% of children with ADHD [52]. In contrast, Jafari et al. observed diffuse dysfunction in processing click and speech stimuli at the brainstem level in these children [53]. It has been reported that S-ABR can be used as a biomarker for neural asynchrony in the brainstem in ADHD [52, 53]. Speech ABR in hearing loss Peixe et al. revealed that speech-ABR can be applied in peo- ple with hearing loss, and it is not much affected by periph- eral hearing loss, unlike click stimulus [54]. Korawand et al. observed prolonged D, E wave latencies and increased off- set (O) wave amplitude in children with mild to moderate sensorineural hearing loss (SNHL) [55]. Leite et al., on the other hand, observed a prolongation of the V, A and O wave latencies in this group [56]. Jalaeia and Zakariab reported that children with bilateral moderate SNHL have prolonged V, A, C wave latencies and a steeper VA slope, but continu- ous components and O wave are not affected by hearing loss [57]. Nada et  al. in their study with /da/ and /ba/ stimuli revealed that the initial responses were more affected by the continuous part, and while the V, A, C, F wave latencies were elongated, no abnormality was observed in the ampli- tudes in adults with mild to moderate SNHL [58]. Peixe et al. observed only prolongation of C wave latency in adults with moderate SNHL [54]. Abd El-Ghaffar et al. observed prolongation in V, A wave latencies and deterioration in F0 amplitude (pitch coding) in the presence of noise in adults with unilateral hearing loss (UHL). Therefore, it has been reported that individuals with UHL may confuse temporal phonemes, have deficiencies in understanding rapid speech and speaking and listening skills in background noise [59]. Anderson et al. reported that adults with mild-to-moderate hearing loss may have difficulties in understanding speech in background noise due to impaired balance of envelope- to-fine structure [60]. Children with childhood otitis media (OM) have impaired speech coding in the brainstem [61, 62]. Sanfins et  al. observed prolongation of latency, especially in the initial responses (V, A waves), but reported that there was no abnormality in amplitudes in children who had secretory otitis media in the first 6 years of their lives and underwent myringotomy for bilateral ventilation tube placement [61]. Al-Kabarity et al. observed prolongation of V, A, O wave latencies and decreased VA slope in children with OM with long-standing effusion [62]. Speech ABR in hearing aid and cochlear implant users Speech-ABR has been reported to have clinical application potential as an objective measure of speech perception with hearing aids [56, 63–65]. Leite et al. observed a significant decrease in wave V, A, O latencies after 9 months of hear- ing aid use of children with mild to moderate SNHL but revealed that wave O latency was longer than normal. This study shows that hearing aid use causes neuroplasticity in the central auditory pathways, but the offset component takes longer to mature [56]. BinKhamis et al. reported that aided responses had shorter latency, greater amplitude, and better F0 coding than non-aided responses [63]. Consistent with this study, Shetty et al. reported that good hearing aid users have better F0 coding at the brainstem level than poor hearing aid users [64]. Hassan et al. in their s-ABR study in people with cochlear dead regions with spectral maxima stimuli after long-term use of hearing aids, observed longer latency and smaller amplitude in dead regions. Thus, it was revealed that the brainstem can encode speech signals with perpendicular spectral maxima to the cochlear dead regions in long-term HA users, and this can be explained by the neuroplasticity of the auditory system [65]. Bellier et al. in their study in which they recorded the responses to 180 ms /ba/ stimulus directly via hearing aids or insert earphones using a wireless connection, they reported hearing aid stimulation provided high quality responses 2105European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 without any stimulus artifact and gave as good results as insert earphones for the same stimulation level. It has been demonstrated that s-ABR with direct hearing aid stimulation is reliable for evaluating both envelope and spectral charac- teristics [66]. In addition, speech ABR can be applied as a routine and reliable test for postoperative language and speech assess- ment protocols in cochlear implant programming [67, 68]. Gabr and Hassaan and Jarollahi et al. showed that cochlear implant users have longer-than-normal latencies, although s-ABR responses are present. It has been reported that indi- viduals with cochlear implants have neural encoding defi- ciencies in the temporal and spectral areas at the level of the brainstem [67, 69]. Rahman et al. observed a decrease in V, F, O wave latencies as the duration of use increased in chil- dren with different durations of cochlear implant use [68]. Nassar et al. obtained results consistent with these studies in cochlear implant users with SNHL and auditory neuropa- thy spectrum disorder [70]. BinKhamis et al. reported that electrical artifacts produced by the cochlear implant affect the s-ABR responses and showed that the application of a single-channel approach is feasible for artifact removal [71]. Speech ABR in tinnitus Omidvar et al. reported that even mild tinnitus affects the temporal aspects of speech stimuli at the subcortical level. In individuals with tinnitus, latency prolongation was observed for all s-ABR waves, but no significant difference was observed in amplitude. There was no significant difference in latency and amplitude in V–A complex measurements, but the slope was significantly reduced. While F0 amplitude was found to be normal in spectral analysis measurements, a decrease was observed in the coding of F1 and higher formants. In conclusion, it was found that tinnitus affects the processing of both non-speech and speech stimuli, and s-ABR can provide more information than click ABR. This finding suggests that tinnitus is due to maladaptive plasticity in the central auditory pathways rather than damage to the cochlea alone [72]. Discussion In studies comparing s-ABR and click ABR measure- ments; Gonçalves et  al. demonstrated that s-ABR has higher sensitivity and specificity than click ABR for iden- tifying phonological disorders [35]. Peixe et al., on the other hand, reported that, unlike the click stimulus, it is not much affected by peripheral hearing loss [54]. These results support studies indicating that speech ABR evaluates regions different from the click stimulus [14, 43]. Similar s-ABR response analysis measures were obtained in studies conducted with children and adults whose native language are English, Brazilian Portuguese, Korean, Arabic, Hebrew, Persian, Portuguese, Greek, and French [12, 16, 17, 19, 24, 27, 32, 35, 37–39, 42, 43, 45, 48, 52, 55, 61, 66, 69, 72]. Only Sanfins et al. reported different responses in native Italian children and adolescents than others [25]. This sug- gests that native language difference does not greatly affect s-ABR and that the same s-ABR procedure can be used in individuals with different mother tongues. In auditory processing disorders [12, 29–32], stuttering [37, 38], sensorineural hearing loss [56, 57], history of otitis media [61, 62], autism spectrum disorder [48–51], atten- tion deficit hyperactivity disorder [52, 53], dyslexia [44, 45, 47], language disorders [32–34], phonological disorders [35, 36], learning disorders [39–43], and tinnitus [72] abnormali- ties were observed in spectral analysis measurements. The apparent abnormalities obtained suggest that s-ABR assess- ment would be useful in these patient populations. Decreased wave latencies and increased amplitudes have been observed with the use of hearing aids and cochlear implants [56, 63–65, 67, 68]. These results are consistent with those obtained from other electrophysiological meas- urements (ABR, MLR, MMN, P3, etc.) [73, 74]. This sug- gests that s-ABR can be used as an objective test in hearing aid and cochlear implant follow-up evaluations. Conclusion Speech ABR is an electrophysiological measurement appli- cable to all age groups, showing the processing of auditory information in the upper regions of the brainstem. S-ABR, due to its high degree of reliability; It can be used as a bio- logical marker in hearing loss, auditory processing disor- ders, learning disorders, language and phonological disor- ders, attention deficit and hyperactivity disorders, dyslexia and autism spectrum disorders. In addition, the result of this review; demonstrated that s-ABR could be included in audiological evaluation in demonstrating auditory rehabilita- tion efficacy in individuals with hearing aids and cochlear implants. Appendix 1 See Table 1. 2106 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 S um m ar ie s o f t he re vi ew ed a rti cl es A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts Ro ch a et  a l. (2 01 0) [1 4] N or m al h ea rin g 50 y ou ng a du lts a ge d 19 –3 2 40  m s / da / Sp ee ch a nd p ur e to ne a ud i- om et ry , t ym pa no m et ry , SP IN te st, F re qu en cy an d du ra tio n pa tte rn te st, cl ic k A B R , s -A B R S- A B R is a su ffi ci en t t oo l to d em on str at e br ai ns te m le ve l a ud io c od in g. S -A B R w av e la te nc y is lo ng er th an c lic k A B R w av e la te nc y Si nh a an d B as av ar aj (2 01 0) [1 5] N or m al h ea rin g 30 y ou ng a du lts a ge d 18 –2 5 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , s -A B R A ll su bj ec ts h av e s- A B R w av es a nd th e s- A B R w av e V h as a lo ng er la te nc y th an th os e re po rte d fo r t he c lic k sti m ul us Pi nt o an d M ar tin el li (2 02 0) [2 4] N or m al h ea rin g 21 n ew bo rn s a ge d 2– 38  d ay s B ra zi lia n Po rtu gu es e 40  m s / da / H ea rin g sc re en in g, TE O A E, c lic k A B R , s- A B R s- A B R w av es w ith ty pi ca l m or ph ol og y ca n be ob ta in ed in n ew bo rn s Sa nfi ns e t a l. (2 01 6) [1 9] N or m al h ea rin g 40 c hi ld re n an d ad ol es - ce nt s a ge d 8– 16 B ra zi lia n Po rtu gu es e 40  m s / da / A ud io m et ry , t ym pa no m e- try , A R , D D T, F re qu en cy pa tte rn te st, G IN , S SI te st, c lic k- A B R , s -A B R Si m ila r s -A B R m ea su re - m en ts to a du lts w er e ob ta in ed Le e an d H an (2 01 7) [1 6] N or m al h ea rin g 30 y ou ng a du lts a ge d 21 –2 5 K or ea n 9 K or ea n sy lla bl es A ud io m et ry , t ym pa no m - et ry , s -A B R A c le ar , d ist in gu is ha bl e an d si m ila r m or ph ol og y to E ng lis h sti m ul i w as ob se rv ed fo r a ll sy lla bl es Sa nfi ns e t a l. (2 01 9) [2 5] N or m al h ea rin g 24 c hi ld re n an d ad ol es - ce nt s a ge d 9– 14 Ita lia n 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , D D T, c lic k- A B R , s -A B R FF R is a n el ec tro ph ys io lo gi - ca l p ro ce du re th at m ak es it po ss ib le to m on ito r t he pr oc es si ng o f a ud ito ry in fo rm at io n in th e su b- co rti ca l r eg io n, w hi ch c an be a pp lie d ev en to v er y yo un g su bj ec ts K ar aw an i a nd B an ai (2 01 0) [1 7] N or m al h ea rin g 34 y ou ng a du lts a ge d 18 –2 8 A ra bi c an d H eb re w 40  m s / da / A ud io m et ry , c lic k- A B R , s- A B R B ra in ste m p ro ce ss in g of th e /d a/ sy lla bl e do es n ot di ffe r b et w ee n En gl is h sp ea ke rs a nd sp ea ke rs o f Se m iti c la ng ua ge s, su ch a s A ra bi c an d H eb re w H or ni ck el e t a l. (2 01 2) [2 0] N or m al h ea rin g 26 c hi ld re n ag ed 8 –1 3 17 0  m s / da / A ud io m et ry , t ym pa no m e- try , c lic k A B R , W IS C -R , W RT , s -A B R in si le nc e an d no is e 1  ye ar a pa rt S- A B R is re pr od uc ib le a nd co ns ist en t o ve r o ne y ea r of g ro w th in ty pi ca lly de ve lo pi ng c hi ld re n 2107European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts Za ka ria v e Ja la ei (2 01 7) [2 1] N or m al h ea rin g 17 c hi ld re n ag ed 5 –9  y ea rs 40  m s / da / A ud io m et ry , t ym pa no m - et ry , a nd s- A B R a t 3 0  dB SL 3  m on th s a pa rt Th e s- A B R re co rd ed a t l ow in te ns ity le ve ls (3 0  dB S L) in h ea lth y ch ild re n w as m ai nt ai ne d ov er a 3 -m on th pe rio d So ng e t a l. (2 01 1) [1 8] N or m al h ea rin g 31 y ou ng a du lts a ge d 19 –3 1, 4 5 ad ul ts a ge d 19 –3 6 17 0  m s / da /, /4 0/ m s d a A ud io m et ry , c lic k A B R , W IS C -R , N on ve rb al In te lli ge nc e Te st- 3 an d s- A B R in si le nc e an d no is e S- A B R e xh ib its a h ig h de gr ee o f r ep ea ta bi lit y in op tim al a nd c ha lle ng in g lis te ni ng c on di tio ns R an a an d B ar m an (2 01 1) [2 3] N or m al h ea rin g 35 y ou ng a du lts a ge d 18 –2 3 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , S PI N , T EO A E, s- A B R Th er e is a si gn ifi ca nt re la tio ns hi p be tw ee n th e S- A B R w av e V la te nc y an d th e TE A O E D ha r e t a l. (2 00 9) [2 2] N or m al h ea rin g 28 y ou ng a du lts a ge d 19 –3 0 40  m s / da / A ud io m et ry , c lic k A B R , D PO A E, s- A B R C er ta in a sp ec ts o f S -A B R ar e as so ci at ed w ith D PO A E Va nd er W er f a nd B ur ns (2 01 1) [2 6] N or m al h ea rin g 19 y ou ng a du lts a ge d 20 –2 6 an d 18 o ld er a ge d 61 –7 8 40  m s / da / A ud io m et ry , c lic k A B R , s- A B R S- A B R c an p ro vi de in fo r- m at io n ab ou t t he a bi lit y of th e ag in g au di to ry sy ste m to e nc od e te m po ra l c ue s Lo tfi e t a l. (2 01 9) [2 7] N or m al h ea rin g 18 y ou ng a du lts a ge d 18 –2 5 Pe rs ia n 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , T EO A E, su pp re ss io n O A E, S PI N , di ch ot ic li ste ni ng a nd la te ra liz at io n te sts in no is e, c lic k A B R , s -A B R in si le nc e an d no is e In c on tra la te ra l n oi se , s- A B R c an b e us ed to ev al ua te th e ro str al p ar t of th e au di to ry e ffe re nt sy ste m M oo ss av i e t a l. (2 02 0) [2 8] N or m al h ea rin g 14 y ou ng a du lts a ge d 18 –2 5 40  m s / da / A ud io m et ry , t ym pa no m - et ry , l at er al iz at io n te sts , s- A B R in si le nt a nd th re e di ffe re nt S N R c on di tio ns S- A B R d em on str at es a ud i- to ry a ffe re nt a nd e ffe re nt sy ste m c oo pe ra tio n to pr oc es s c om pl ex a ud ito ry sti m ul i i n no is e 2108 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts Ro ch a- M un iz e t a l. (2 01 6) [3 0] CA PD 27 c hi ld re n ag ed 7 –1 5 40  m s / da / A ud io m et ry , s -A B R , a ud i- to ry lo ca liz at io n, V er ba l an d N on -v er ba l S eq ue n- tia l M em or y, S PI N , S SW Fr eq ue nc y an d D ur at io n Pa tte rn te sts , G IN A bn or m al s- A B R h as g en er - al ly b ee n fo un d to re pr e- se nt a ud ito ry p ro ce ss in g di so rd er s, su gg es tin g th at it ca n be u se d in c lin ic al pr ac tic e as a n ad ju nc t to ol in th e ev al ua tio n of A PD . I t c an a ls o pr ov id e in fo rm at io n ab ou t s pe ec h so un d pe rc ep tio n in ch ild re n w ho se b eh av io ra l as se ss m en t i s d iffi cu lt Ro ch a- M un iz e t a l. (2 01 4) [1 2] CA PD a nd la ng ua ge di so rd er 75 c hi ld re n ag ed 6– 12  y ea rs (2 5 TD , 2 5 A PD , 2 5 LD ) B ra zi lia n Po rtu gu es e 40  m s / da / A ud io m et ry , t ym pa no m - et ry , D D T, S SW , S PI N , Fr eq ue nc y pa tte rn te st, A B FW C hi ld L an gu ag e Te st, T EL D -3 , R AV EN te st, s- A B R Th e S- A B R c an b e us ed cl in ic al ly fo r t he a ss es s- m en t o f c en tra l h ea rin g fu nc tio n an d ca n al so pr ov id e ad di tio na l i nf or - m at io n in th e di ag no si s o f la ng ua ge im pa irm en t a nd A PD K um ar a nd S in gh (2 01 5) [3 1] CA PD 30 c hi ld re n ag ed 8– 12  y ea rs (1 5 A PD , 15 T D ) 40  m s / da / A ud io m et ry , S CA P, E R S, cl ic k A B R , s -A B R Th e S- A B R B io M A R K pr ot oc ol c an c le ar ly d ist in - gu is h be tw ee n ch ild re n at ris k fo r ( C )A PD a nd ty pi - ca lly d ev el op in g ch ild re n Ro ch a- M un iz e t a l. (2 01 2) [3 2] CA PD a nd la ng ua ge di so rd er 57 c hi ld re n ag ed 6 –1 2 (1 8 TD , 1 8 A PD , 2 1 LD ) B ra zi lia n Po rtu gu es e 40  m s / da / Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , A R , D D T, S SW , S PI N , Fr eq ue nc y pa tte rn te st, A B FW C hi ld L an gu ag e Te st, T EL D -3 , R AV EN , s- A B R S- A B R re su lts d iff er a m on g ch ild re n w ith a ud ito ry pr oc es si ng a nd sp ee ch -la n- gu ag e di so rd er s o f n eu ra l pr oc es se s i n th e au di to ry br ai ns te m Fl ip pi ni a nd S ch oc ha t (2 00 9) CA PD 40 p ar tic ip an ts b et w ee n th e ag es o f 7 –2 4 (2 0 A PD , 2 0 TD ) 40  m s / da / A ud io m et ry , c lic k- A B R , s- A B R S- A B R is a v al id m et ho d fo r e va lu at in g br ai ns te m au di to ry fu nc tio n in in di vi du al s w ith a ud ito ry pr oc es si ng d is or de r 2109European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts G ab r a nd D ar w is h (2 01 6) [3 4] La ng ua ge d is or de rs 40 c hi ld re n ag ed 3 –7 (2 0 LD , 2 0 N or m al ) 20 6  m s / da / Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , A R , P LS -4 , c lic k an d s- A B R S- A B R is a h ig hl y effi ci en t, ea sy , f as t, re lia bl e an d w el l-t ol er at ed p ro ce du re th at a llo w s f or e ar ly d ia g- no si s a nd m an ag em en t of la ng ua ge p ro ce ss in g pr ob le m s Fl ip pi ni e t a l. (2 01 2) CA PD a nd la ng ua ge di so rd er s 30 c hi ld re n ag ed 7– 13  y ea rs (9 A PD , 7 N or m al , 6 c hi ld re n A R + S T, 8 c hi ld re n on ly ST ) 40  m s / da / A ud io m et ry , t ym pa no m e- try , c lic k A B R , R AV EN , SP IN , S SW , D D T, s- A B R Th e eff ec tiv en es s o f f or m al au di to ry tr ai ni ng c an b e de m on str at ed w ith s- A B R in b ac kg ro un d no is e G on ça lv es e t a l. (2 01 1) [3 5] Ph on ol og ic al D is or de r 36 c hi ld re n ag ed 7 –1 1 (1 8 PD , 1 8 TD ) Po rtu gu es e 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , A B FW C hi ld La ng ua ge T es t, cl ic k A B R , s -A B R A bn or m al s- A B R fi nd - in gs m ay b e a bi ol og ic al m ar ke r o f p ho no lo gi ca l di so rd er s. H ow ev er , t he se re su lts c an no t i de nt ify th e bi ol og ic al o rig in s o f ph on ol og ic al p ro bl em s El B el ta gy e t a l. (2 01 9) Ph on ol og ic al D is or de r 30 c hi ld re n ag ed 3 .5 –5 .5 (1 5 PD , 1 5 TD ) /b a/ Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , A R , A A T, c lic k A B R , s- A B R , M M N In c hi ld re n w ith p ho no - lo gi ca l d is or de rs , c or tic al au di to ry p ro ce ss in g ca n be ev al ua te d w ith s- A B R a nd M M N W ib le e t a l. (2 00 5) [3 9] Le ar ni ng D is or de rs 20 c hi ld re n w ith a m ea n ag e of 1 1 (1 1 LD , 9 T G ) En gl is h 40  m s / da / A ud io m et ry , S C I, au di to ry -p er ce pt ua l t es ts , s- A B R a nd s- co rti ca l re sp on se s W ea ke ne d co rr el at io ns be tw ee n th e br ai ns te m a nd au di to ry c or te x ha ve b ee n fo un d in c hi ld re n w ith la ng ua ge -b as ed le ar ni ng di sa bi lit ie s G ha nn ou m e t a l. (2 01 4) [4 0] Le ar ni ng D is or de rs 60 c hi ld re n ag ed 6 –8 , 8– 10 , 1 0– 12 (3 0 LD , 30 T D ) 40  m s / da / Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , A R , A D T, S ta nf or d- B in et In te lli ge nc e Sc al e, s- A B R Fo r c hi ld re n w ith le ar ni ng di sa bi lit ie s, it ha s b ee n re co m m en de d to ro ut in el y pe rfo rm th e s- A B R te st in a dd iti on to b eh av io ra l au di to ry p ro ce ss in g te sts Sa ch in e t a l. (2 01 9) [4 1] Le ar ni ng D is or de rs 25 c hi ld re n ag ed 5– 12  y ea rs 40  m s / da / Pu re to ne a nd sp ee ch au di om et ry , t ym pa no m - et ry , A R , c lic k A B R a nd s- A B R Th e S- A B R is a n eff ec tiv e to ol to id en tif y un de rly - in g au di to ry p ro ce ss in g di ffi cu lti es in c hi ld re n w ith le ar ni ng d is ab ili tie s a nd m ay b e he lp fu l i n ea rly in te rv en tio n 2110 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts M al ay er i e t a l. (2 01 4) [4 2] Le ar ni ng D is or de rs 83 c hi ld re n ag ed 8 –1 2 (4 9 LD , 3 4 TD ) Pe rs ia n 40  m s / da / A ud io m et ry , t ym pa no m - et ry , W IS C , W IA T- II , cl ic k A B R , s -A B R A si gn ifi ca nt d el ay in th e te m po ra l c om po ne nt s of b ot h cl ic k an d sp ee ch A B R h as b ee n ob se rv ed in c hi ld re n w ith le ar ni ng di sa bi lit ie s So ng e t a l. (2 00 6) [4 3] Le ar ni ng D is or de rs 23 4 ch ild re n ag ed 8 –1 2 (1 19 L D , 1 15 T D ) En gl is h 40  m s / da / W oo dc oc k- Jo hn so n ps yc h- oe du ca tio na l t es ts , c lic k A B R a nd s- A B R C lic k an d s- A B R la rg el y re fle ct se pa ra te n eu ra l pr oc es se s, an d on ly th e pr oc es se s i nv ol ve d in e nc od in g co m pl ex si gn al s s uc h as sp ee ch a re im pa ire d in c hi ld re n w ith le ar ni ng d is ab ili tie s K ou ni e t a l. (2 01 3) [4 5] D ys le xi a an d ot he r L D 40 y ou ng a du lts a ge d 18 –2 3 (1 0 dy sl ex ia , 1 0 ot he r L D , 2 0 TD ) G re ek /b ab a/ W A IS -I V, P ur e to ne a nd sp ee ch a ud io m et ry , ty m pa no m et ry , A R , c lic k A B R , s -A B R Su bj ec ts w ith d ys le xi a or ot he r l ea rn in g di sa bi li- tie s h av e lo ng er A a nd C w av e la te nc y. E lo ng at io n is h ig he r i n th os e w ith dy sl ex ia K ou ni e t a l. (2 00 6) [4 6] D ys le xi a 20 y ou ng a du lts a ge d 18 –2 3 (1 0 D ys le xi a, 1 0 N or m al ) /m a/ Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , cl ic k A B R , s -A B R S- A B R b as el in e re sp on se s w er e pr ol on ge d in y ou ng ad ul ts w ith d ys le xi a co m - pa re d to th e co nt ro l g ro up B ill ie t a nd B el lis (2 01 1) [4 4] D ys le xi a 32 c hi ld re n ag ed 8 –1 2 (1 0 ab no rm al b ra in ste m ti m - in g, 2 0 no rm al ) 40  m s / da / A ud io m et ry , t ym pa no m - et ry , c lic k A B R , s -A B R , D D T, F re qu en cy p at te rn te st, C S, L PF S Th ro ug h be ha vi or al to ol s of c en tra l a ud ito ry as se ss m en t, B io M A R K ca n id en tif y a su bs et o f ch ild re n w ho w ill n ot m ee t di ag no sti c cr ite ria fo r ( C ) A PD b ut w ho m ay b en efi t fro m a ud ito ry -b as ed in te r- ve nt io n ap pr oa ch es H or ni ck el a nd K ra us (2 01 3) [4 7] D ys le xi a 10 0 ch ild re n ag ed 6 –1 3 17 0  m s / ba / v e /g a/ A ud io m et ry , c lic k A B R , Sp ok en W or d Re ad in g A ct iv ity : V is io n su bt es t, A D H D R S- IV , s -A B R Po or re ad er s h av e m or e va ria bl e s- A B R re sp on se s th an a ve ra ge a nd g oo d re ad er s R am ez an i e t a l. (2 01 9) [4 8] A SD 56 c hi ld re n w ith a n av er - ag e ag e of 1 4 Fa rs ça 40  m s / da / Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , D SM -I V, s- A B R It w as c on cl ud ed th at c hi l- dr en w ith A SD h av e de fi- ci en ci es in th e te m po ra l ne rv e en co di ng o f s pe ec h at th e br ai ns te m le ve l 2111European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts K am ita e t a l. (2 02 0) [4 9] A SD 30 c hi ld re n ag ed 7 –1 2 (1 5 O SD , 1 5 TD ) 40  m s / da / Pu re to ne a nd sp ee ch au di om et ry , t ym pa no m - et ry , A R , D SM -I V, A B C , W is co ns in C ar d M ap - pi ng T es t, cl ic k A B R a nd s- A B R In c hi ld re n w ith a ut is m , t he in iti al p or tio n of th e ve rb al sti m ul us m ay h av e fa ste r ne ur al e nc od in g, su gg es t- in g hy pe rs en si tiv ity to co m pl ex so un ds , s uc h as sp ee ch Ru ss o et  a l. (2 00 9) [5 0] A SD 39 c hi ld re n ag ed 7 –1 3 (2 1 A SD , 1 8 TD ) 40  m s / da / A ud io m et ry , c lic k A B R , W A SI , C EL F, s- A B R in si le nc e an d no is e S- A B R m ay b e a cl in ic al to ol to e va lu at e au di to ry pr oc es si ng a nd to o bs er ve th e eff ec ts o f a ud ito ry tra in in g in th e A SD po pu la tio n C he n et  a l. (2 01 9) [5 1] A SD 35 c hi ld re n ag ed 3 –6 (1 5 A SD , 2 0 TD ) 40  m s / da / A ud io m et ry , G D D S, CA R S, A D O S, s- A B R S- A B R c an b e us ed a s a n ob je ct iv e m ea su re in ev al ua tin g th e la ng ua ge pe rfo rm an ce o f c hi ld re n w ith A SD A zz am a nd H as an (2 01 0) [5 2] A D H D /C 30 c hi ld re n ag ed 5– 10  y ea rs (1 5 A D H D , 15 T D ) A ra bi c 40  m s / da / A ud io m et ry , t ym pa no m - et ry , W IS C -R , M IN I- K id , c lic k A B R , s -A B R , M M N S- A B R m ay se rv e as a bi om ar ke r f or n eu ra l a sy n- ch ro ny in th e br ai ns te m in ch ild re n w ith A D H D Ja fa ri et  a l. (2 01 5) [5 3] A D H D 84 c hi ld re n ag ed 8 –1 2 (5 0 A D H D , 3 4 TD ) 40  m s / da / A ud io m et ry , t ym pa no m e- try , A R , W IS C -R , D SM - IV , c lic k A B R , s -A B R C hi ld re n w ith A D H D h av e a co m m on d ys fu nc tio n in th e pr oc es si ng o f n on - sp ee ch a nd sp ee ch st im ul i at th e br ai ns te m le ve l Ta ha ei e t a l. (2 01 4) [3 7] St ut te rin g 50 a du lts a ge d 16 –3 5 (2 5 PD S, 2 5 TD ) Pe rs ia n 40  m s / da / A ud io m et ry , t ym pa no m - et ry , S SI -3 , c lic k A B R , s- A B R N eu ra l c od in g de fic ie nc ie s fo r t em po ra l f ea tu re s h av e be en o bs er ve d in a du lts w ith P D S in th e ea rly st ag es o f t he a ud ito ry pa th w ay C riv el la ro G on ça lv es e t a l. (2 01 5) [3 8] St ut te rin g 20 c hi ld re n ag ed 7 –1 1 (1 0 stu tte re rs , 1 0 TD ) B ra zi lia n Po rtu gu es e 40  m s / da / A ud io m et ry , t ym pa no m - et ry , S SI -3 , c lic k A B R an d s- A B R C om pa re d w ith ty pi ca lly de ve lo pi ng c hi ld re n, th er e ar e di ffe re nc es in th e ne ur al p ro ce ss es in vo lv ed in p ro ce ss in g ac ou sti c in fo rm at io n in c hi ld re n w ho st ut te r 2112 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts K or av an d et  a l. (2 01 7) [5 5] M ild to m od er at e SN H L 25 c hi ld re n ag ed 6 –1 4 (1 2 SN H L, 1 3 no rm al he ar in g) Fr en ch a nd E ng lis h 40  m s / da / A ud io m et ry , t ym pa no m - et ry , c lic k A B R , s -A B R M ea su rin g s- A B R re sp on se s as su bc or tic al m ar ke rs in ch ild re n w ith h ea rin g lo ss m ay p ro vi de a n ob je ct iv e m ea su re to e va lu at e th e fu nc tio n of th e ce nt ra l au di to ry sy ste m N ad a et  a l. (2 01 6) [5 8] M ild to m od er at e SN H L 60 a du lts a ge d 18 –5 0 (4 0 m ild to m od er at e SN H L, 20 n or m al h ea rin g) 11 4  m s / ba /, 20 6  m s / da / Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , A R , c lic k A B R , s -A B R Sp ee ch p ro ce ss in g is aff ec te d at th e br ai ns te m le ve l i n pe op le w ith m ild to m od er at e SN H L Ja la ei a an d Za ka ria b (2 01 9) [5 7] M od er at e SN H L 32 c hi ld re n ag ed 4 –9 (1 7 SN H L, 1 5 no rm al he ar in g) 40  m s / da / A ud io m et ry , t ym pa no m - et ry , O A E, c lic k A B R , s- A B R In c hi ld re n w ith m od er - at e SN H L, th e br ai ns te m co di ng o f t he te m po ra l a nd ph on em e tra ns iti on al p ar ts of th e sp ee ch sy lla bl e is si gn ifi ca nt ly im pa ire d Pe ix e et  a l. (2 01 8) [5 4] M od er at e SN H L 11 A du lts w ith S N H L ag ed 1 8– 59 40  m s / da / A ud io m et ry , t ym pa no m - et ry , c lic k A B R , s -A B R U nl ik e cl ic k sti m ul us , S- A B R is n ot a ffe ct ed b y pe rip he ra l h ea rin g lo ss an d ca n be p er fo rm ed in p eo pl e w ith m od er at e SN H L A nd er so n et  a l. (2 01 3) [6 0] M ild to m od er at e SN H L 30 o ld er a du lts a ge d 60 –7 1 (1 5 m ild to m od er at e he ar in g lo ss , 1 5 no rm al he ar in g) 40  m s / da / A ud io m et ry , t ym pa no m - et ry , W A SI , c lic k A B R , s- A B R Th er e is so m e de te rio ra - tio n in th e en ve lo pe to fin e str uc tu re b al an ce in th e he ar in g lo ss g ro up co m pa re d to th e no rm al he ar in g gr ou p A bd E l-G ha ffa r e t a l. (2 01 7) [5 9] U ni la te ra l h ea rin g lo ss 45 a du lts a ge d 21 –4 6 (3 0 U H L, 1 5 no rm al h ea rin g 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , s -A B R in si le nc e an d ip si la te ra l no is e D efi ci en ci es in e nc od in g ra pi dl y ch an gi ng te m po ra l cu es a t t he b ra in ste m le ve l a ffe ct th e ab ili ty to un de rs ta nd ra pi d sp ee ch or sp ea k se pa ra te ly fr om ba ck gr ou nd n oi se in a du lts w ith U H L 2113European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts Sa nfi ns e t a l. (2 01 7) [6 1] O tit is m ed ia 60 c hi ld re n ag ed 8– 14  y ea rs (3 0 O M , 3 0 N or m al ) B ra zi lia n Po rtu gu es e 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , c lic k A B R , s- A B R C hi ld re n w ith S O M in th ei r fir st 6  ye ar s o f l ife a nd w ho u nd er w en t m yr in go t- om y fo r b ila te ra l v en til a- tio n tu be p la ce m en t s ho w ch an ge s i n th ei r s -A B R re sp on se El -K ab ar ity e t a l. (2 01 5) [6 2] O tit is m ed ia w ith e ffu si on 55 c hi ld re n ag ed 5– 11  y ea rs (2 5 lo ng -te rm O M E, 3 0 ne w -o ns et O M E 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , c lic k A B R , s- A B R Pr ol on ge d O M E in c hi ld re n is a ss oc ia te d w ith in ad - eq ua te n eu ra l t im in g in re sp on se to th e on se t a nd st ab ili za tio n of tr an si en t sp ee ch st im ul i a nd c au se s a m ild im pa irm en t o f sp ee ch c od in g in th e br ai ns te m B el lie r e t a l. (2 01 5) [6 6] H A st im ul at io n 4 no rm al h ea rin g ad ul ts ag ed 2 2– 25 Fr en ch 18 0  m s / ba / A ud io m et ry , t ym pa no m - et ry , A R , c lic k A B R , s- A B R Th ro ug h he ar in g ai d sti m u- la tio n, s- A B R e ns ur es hi gh -q ua lit y re sp on se s a nd w or ks a s w el l a s i ns er t he ad ph on es fo r t he sa m e le ve l o f s tim ul at io n Le ite e t a l. (2 01 8) [5 6] H A u se r 32 c hi ld re n ag ed 7– 12  y ea rs (1 8 bi l. m ild to m od er at e SN H L, 1 4 no rm al h ea rin g) 40  m s / da / A ud io m et ry , t ym pa no m - et ry , s -A B R H ea rin g ai d us e ha s b ee n sh ow n to in cr ea se n eu ra l pl as tic ity o f t he c en tra l au di to ry n er vo us sy ste m af te r a lo ng p er io d of se ns or y sti m ul at io n B in K ha m is e t a l. (2 01 9a ) [6 3] H A u se r 98 h ea rin g ai d us er s a ge d 18 –6 0  ye ar s 40  m s / da / A ud io m et ry , t ym pa no m - et ry , A R , D ST , S IN , s- A B R S- A B R h as th e po te nt ia l fo r c lin ic al a pp lic at io n as an o bj ec tiv e m ea su re o f sp ee ch p er ce pt io n w ith he ar in g ai ds Sh et ty e t a l. (2 01 7) [6 4] H A u se r 60 h ea rin g ai d us er s w ith m od er at e SN H L ag ed 15 –6 5  ye ar s 94  m s / da /, 30 1  m s / si / Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , A R , c lic k A B R , a id ed an d no n- ai de d s- A B R A lth ou gh h ea rin g ai d sp ec tra a re n ea rly id en tic al be tw ee n go od h ea rin g ai d us er s a nd p oo r h ea rin g ai d us er s, su bt le p hy si ol og i- ca l v ar ia tio ns e xi st in th e au di to ry b ra in ste m 2114 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts H as sa an e t a l. (2 01 6) [6 5] H A u se r 40 H A u se r w ith m od er - at e- to -s ev er e SN H L ag ed 18 –4 0  ye ar s 11 4  m s / ba /, 21 3  m s / ga /, 20 6  m s / da / A ud io m et ry , t ym pa no m - et ry , T EN te st, s- A B R Th e br ai ns te m c an e nc od e sp ee ch si gn al s w ith st im ul i w ith sp ec tra l m ax im a pe r- pe nd ic ul ar to th e co ch le ar de ad re gi on s i n lo ng -te rm he ar in g ai d us er s. Th is c an be e xp la in ed b y th e ne ur o- pl as tic ity o f t he a ud ito ry sy ste m a fte r p ro lo ng ed u se of th e he ar in g ai d G ab r a nd H as sa an (2 01 5) [6 7] C I u se r 20 c hi ld re n ag ed 2 -6  y ea rs 20 6  m s / da / A id ed p ed ia tri c au di om e- try , t ym pa no m et ry , O A E, C T, M R I, cl ic k A B R , s- A B R Sp ee ch p ro ce ss in g in ch ild re n w ith C I c an b e ev al ua te d effi ci en tly a t bo th th e br ai ns te m a nd co rti ca l l ev el s e ar ly a fte r im pl an ta tio n. S -A B R c an be ro ut in el y us ed in p os t- op er at iv e ev al ua tio n in C I pr og ra m s B in K ha m is e t a l. (2 01 9b ) [7 1] C I u se r 12 a du lts C I u se rs a ge d 39 –6 0  ye ar s 40  m s / da / s- A B R D em on str at es p ot en tia l fo r i m pl em en ta tio n of a si ng le -c ha nn el a pp ro ac h to ar tif ac t r em ov al . Ja ro lla hi e t a l. (2 02 0) [6 9] C I u se r 40 c hi ld re n ag ed 8– 10  y ea rs (2 0 rig ht e ar C I, 20 n or m al h ea rin g) Fa rs ça 40  m s / da / A ud io m et ry , t el em et ry , s- A B R Fr ee -fi el d re co rd ed s- A B R is u se fu l f or a ss es si ng sp ee ch p ro ce ss in g at th e br ai ns te m le ve l i n C I u se rs as a n ob je ct iv e, n on -in va - si ve a nd e ffi ci en t c lin ic al pr oc ed ur e R ah m an e t a l. (2 01 7) [6 8] C I u se r 31 c hi ld re n ag ed 4 –5  y ea rs (1 0 ch ild re n fo r 1  y ea r, 12 fo r 2  y ea rs , 9 c hi ld re n fo r 3  y ea rs u si ng C I) 40  m s / da / Pu re to ne a nd sp ee ch a ud i- om et ry C I fi tti ng , A D T, W IN , M M N , s -A B R C hi ld re n us in g C I s ho w co rti ca l a nd b ra in ste m ac tiv at io n fro m th e fir st ye ar a nd th es e ac tiv ity ch an ge s i m pr ov e w ith C I us e. M M N a nd s- A B R c an be e ar ly a nd c rit ic al ta rg et in di ca to rs o f o pt im um sp ee ch c od in g af te r p ro - gr am m in g th e C I 2115European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Ta bl e 1 (c on tin ue d) A ut ho rs St ud y gr ou p Pa rti ci pa nt s N at iv e la ng ua ge s- A B R st im ul us A ss es sm en ts Re su lts N as sa r e t a l. (2 02 0) C I u se r 45 p ar tic ip an ts a ge d 2. 9– 29  y ea rs (2 9 C I u se rs ; 16 S N H L, 1 3 A N SD , 1 6 no rm al h ea rin g) 15 0  m s / da / Pu re to ne a nd sp ee ch a ud i- om et ry , t ym pa no m et ry , ps yc ho so ci al a ss es sm en t, A PH A B , s -c or tic al ev ok ed re sp on se s, s- A B R S- A B R re sp on se s c an b e su cc es sf ul ly re co rd ed in in di vi du al s w ith a c oc hl ea r im pl an te d au di to ry n eu - ro pa th y sp ec tru m d is or de r O m id va r e t a l. (2 01 8) [7 2] Ti nn itu s 38 a du lts w ith a n av er ag e ag e of 3 5 (1 8 Ti nn itu s, 20 N or m al ) Pe rs ia n 40  m s / da / A ud io m et ry , t ym pa no m - et ry , C T, M R I, TH I, Ti nn itu s f re qu en cy a nd in te ns ity a ss es sm en t, cl ic k A B R , s -A B R It ha s b ee n fo un d th at ti n- ni tu s a ffe ct s t he p ro ce ss in g of b ot h no n- sp ee ch a nd sp ee ch st im ul i, an d s- A B R ca n pr ov id e m or e in fo rm a- tio n th an c lic k A B R PT A pu re to ne a ve ra ge , S PI N s pe ec h pe rc ep tio n in n oi se , A R ac ou sti c re fle xe s, N H S ne w bo rn h ea rin g sc re en in g, T EO AE tr an si en t o to ac ou sti c em is si on s, D D T di ch ot ic d ig it te st, G IN g ap in no is e, S SI s yn th et ic s en te nc e id en tifi ca tio n te st, W RT w or d re ad in g te st, W IS C H -R W es ch le r I nt el lig en ce S ca le fo r C hi ld re n, D PO AE D ist or tio n Pr od uc t O A E, S N R si gn al to n oi se ra tio , A PD au di to ry p ro ce ss in g di so rd er , S SW s ta gg er ed S po nd ai c W or d te st, L D la ng ua ge d is or de rs , T D ty pi ca lly d ev el op ed , T EL D -3 te st of e ar ly la ng ua ge d ev el op m en t-3 , R AV EN R av en ’s c ol or ed p ro - gr es si ve m at ric es , S CA P sc re en in g ch ec kl ist fo r a ud ito ry p ro ce ss in g, E RS e ar ly re ad in g sk ill s, PL S- 4 Pr es ch oo l L an gu ag e Sc al es -4 , A R au di to ry re ha bi lit at io n, S T sp ee ch th er ap y, P D p ho no - lo gi ca l d is or de rs , A AT A ra bi c ar tic ul at io n te st, M M N m is m at ch n eg at iv ity , S C I s ho rt co gn iti ve in de x, A LT A ra bi c La ng ua ge T es t, W IA T- II W ec hs le r I nd iv id ua l A ch ie ve m en t T es t-I I, W AI S- IV W ec hs le r A du lt In te lli ge nc e Sc al e- IV , C S co m pe tin g se nt en ce s te st, L PF S lo w -p as s fil te r s pe ec h te st, A D H D R S- IV A D H D R at in g Sc al e- IV , A SD a ut is m s pe ct ru m d is or de r, D SM -I V di ag no sti c an d st at ist ic al m an ua l o f m en ta l d is or de rs I V, A BC a ut is m b eh av io r ch ec kl ist , W AS I W ec hs le r A bb re vi at ed S ca le o f In te lli ge nc e, C EL F cl in ic al e va lu at io n of la ng ua ge f un da m en ta ls , G D D S G es el l D ev el op m en ta l S ch ed ul es , C AR S C hi ld ho od A ut is m R at in g Sc al e, A D O S au tis m d ia gn os tic o bs er va tio n sc he du le , A D H D a tte nt io n de fic it hy pe ra ct iv ity d is or de r, M IN I- K id In te rn at io na l N eu ro ps yc hi at ric In te rv ie w fo r C hi ld re n an d A do le sc en ts , P D S pe rs ist en t d ev el op m en ta l s tu tte rin g, S SI -3 S tu tte rin g Se ve rit y In str um en t-3 , S N H L se ns or in eu ra l h ea rin g lo ss , O AE o to ac ou sti c em is si on s, H L he ar in g lo ss , U H L un ila te ra l h ea rin g lo ss , O M E ot iti s m ed ia w ith e ffu si on , H A he ar in g ai d, D ST D ig it Sp an T es t, SI N s pe ec h in n oi se te st, C T co m pu te r t om og ra ph y, M RI m ag - ne tic re so na nc e im ag in g, C I c oc hl ea r i m pl an t, W IN w or d in n oi se te st, A PH AB a bb re vi at ed p ro fil e of h ea rin g ai d be ne fit , A N SD a ud ito ry n eu ro pa th y sp ec tru m d is or de r, TH I t in ni tu s ha nd ic ap in ve nt or y 2116 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 Acknowledgements Not applicable. Author contributions All authors read and approved the final manu- script. MBB; acquisition and analysis of data, drafting and reviewing of the manuscript. NG; acquisition and analysis of data. EK; drafting and reviewing of the manuscript. NB; conception and design of the study. OGT; conception and design of the study. Funding There are no financial resources. Availability of data and materials Not applicable. Declarations Conflict of interest The authors declare that they have no competing interests. Ethics approval and consent to participate Not applicable. Consent for publication Yes. References 1. Johnson KL, ve Nicol TG, Kraus N (2005) Brain stem response to speech: a biological marker of auditory processing. Ear Hear 26(5):424–434 2. Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N (2009) Reading and subcortical auditory function. Cereb Cortex 19(11):2699–2707 3. Skoe E, Kraus N (2010) Auditory brainstem response to com- plex sounds: a tutorial. Ear Hear 31(3):302–324 4. Hornickel J, Skoe E, Kraus N (2009) Subcortical laterality of speech encoding. Audiol Neurotol 14(3):198–207 5. Sanfins MD, Hatzopoulos S, Donadon C, Diniz TA, Borges LR, Skarzynski PH, Francisca Colella-Santos M (2018) An analysis of the parameters used in speech ABR assessment protocols. J Int Adv Otol 14(1):100–105 6. Sanfins MD, Skarzynski PH, Colella-Santos M (2017) Speech- evoked brainstem response. In: Hatzopoulos S (ed) Advances in clinical audiology. InTech, London, pp 9–28 7. Chandrasekaran B, Kraus N (2010) The scalp-recorded brain- stem response to speech: neural origins and plasticity. Psycho- physiology 47(2):236–246 8. Banai K, Abrams D, Kraus N (2007) Sensory-based learning disability: insights from brainstem processing of speech sounds. Int J Audiol 46(9):524–532 9. Abrams D, Kraus N (2015) Auditory pathway representations of speech sounds in humans. In: Katz J, Chasin M, English K, Hood L, Tillery K (eds) Handbook of clinical audiology. Wolters Kluwer Health, Philadelphia, pp 527–544 10. Johnson KL, Nicol TG, Zecker SG, Kraus N (2007) Auditory brainstem correlates of perceptual timing deficits. J Cognit Neu- rosci 19(3):376–385 11. Johnson KL, Nicol T, Zecker SG, Krause N (2008) Develop- mental plasticity in the human auditory brainstem. J Neurosci 28(15):4000–4007 12. Rocha-Muniz CN, Befi-Lopes DM, Schochat E (2014) Sensitiv- ity, specificity and efficiency of speech-evoked ABR. Hear Res 317:15–22 13. Sanfins MD, Borges LR, Ubiali T, Colella-Santos MF (2017) Speech-evoked auditory brainstem response in the differential diagnosis of scholastic difficulties. Braz J Otorhinolaryngol 83(1):112–116 14. Rocha CN, Filippini R, Moreira RR, Neves IF, Schochat E (2010) Brainstem auditory evoked potential with speech stimu- lus. Pro-fono revista de atualizacao cientifica 22(4):479–484 15. Sinha SK, Basavaraj V (2010) Speech evoked auditory brainstem responses: a new tool to study brainstem encod- ing of speech sounds. Indian J Otolaryngol Head Neck Surg 62(4):395–399 16. Lee J, Han W (2017) Auditory brainstem encoding of plo- sives in Korean normal hearing listeners. Audiol Speech Res 13(2):101–107 17. Karawani H, Banai K (2010) Speech-evoked brainstem responses in Arabic and Hebrew speakers. Int J Audiol 49(11):844–849 18. Song JH, Nicol T, Kraus N (2011) Test–retest reliability of the speech-evoked auditory brainstem response. Clin Neurophysiol 122(2):346–355 19. Sanfins MD, Borges LR, Ubiali T, Donadon C, Diniz Hein TA, Hatzopoulos S, Colella-Santos MF (2016) Speech-evoked brain- stem response in normal adolescent and children speakers of Bra- zilian Portuguese. Int J Pediatric Otorhinolaryngol 90:12–19 20. Hornickel J, Knowles E, Kraus N (2012) Test-retest consistency of speech-evoked auditory brainstem responses in typically-devel- oping children. Hear Res 284(1–2):52–58 21. Zakaria MN, Jalaei B (2017) Test-retest reliability of speech- evoked auditory brainstem response in healthy children at a low sensation level. Int J Pediatric Otorhinolaryngol 102:28–31 22. Dhar S, Abel R, Hornickel J, Nicol T, Skoe E, Zhao W, Kraus N (2009) Exploring the relationship between physiological measures of cochlear and brainstem function. Clin Neurophysiol 120(5):959–966 23. Rana B, Barman A (2011) Correlation between speech-evoked auditory brainstem responses and transient evoked otoacoustic emissions. J Laryngol Otol 125(9):911–916 24. Pinto E, Martinelli MC (2020) Brainstem auditory evoked potentials with speech stimulus in neonates. Braz J Otorhi- nolaryngol 86(2):191–200 25. Sanfins MD, Hatzopoulos S, Hein TAD, Bordin T, Skarzynski PH, Colella-Santos MF (2019) Evaluation of the frequency fol- lowing response in Italian children: a pilot study. J Hear Sci 9(2):45–50 26. Vander Werff KR, Burns KS (2011) Brain stem responses to speech in younger and older adults. Ear Hear 32(2):168–180 27. Lotfi Y, Moossavi A, Javanbakht M, Faghih Zadeh S (2019) Speech-ABR in contralateral noise: a potential tool to evaluate rostral part of the auditory efferent system. Med Hypotheses 132:109355 28. Moossavi A, Lotfi Y, Javanbakht M, Faghihzadeh S (2020) Speech-evoked auditory brainstem response; electrophysi- ological evidence of upper brainstem facilitative role on sound lateralization in noise. Neurol Sci 41(3):611–617 29. Filippini R, Schochat E (2009) Brainstem evoked auditory potentials with speech stimulus in the auditory processing dis- order. Braz J Otorhinolaryngol 75(3):449–455 30. Rocha-Muniz CN, Filippini R, Neves-Lobo IF, Rabelo CM, Morais AA, Murphy CF, Calarga KS, Leite LC, Pires MM, Sena-Yoshinaga TA, Schochat E (2016) Can speech-evoked Auditory Brainstem Response become a useful tool in clinical practice? CoDAS 28(1):77–80 31. Kumar P, Singh NK (2015) BioMARK as electrophysi- ological tool for assessing children at risk for (central) 2117European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 auditory processing disorders without reading deficits. Hear Res 324:54–58 32. Rocha-Muniz CN, Befi-Lopes DM, Schochat E (2012) Investi- gation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response. Hear Res 294(1–2):143–152 33. Filippini R, Befi-Lopes DM, Schochat E (2012) Efficacy of auditory training using the auditory brainstem response to com- plex sounds: auditory processing disorder and specific language impairment. Folia Phoniatr Logop 64(5):217–226 34. Gabr TA, Darwish ME (2016) Speech auditory brainstem response audiometry in children with specific language impair- ment. Hear Balance Commun 14(1):50–58 35. Gonçalves IC, Wertzner HF, Samelli AG, Matas CG (2011) Speech and non-speech processing in children with pho- nological disorders: an electrophysiological study. Clinics 66(2):293–298 36. El-Beltagy R, Galhom D, Hassan EHM (2019) Auditory brain- stem response and speech mismatch negativity in children with phonological disorders. Egypt J Otolaryngol 35(1):79–85 37. Tahaei AA, Ashayeri H, Pourbakht A, Kamali M (2014) Speech evoked auditory brainstem response in stuttering. Scientifica 2014:1–7 38. Crivellaro Goncalves I, Furquim de Andrade CR, Gentile Matas C (2015) Auditory processing of speech and non-speech stimuli in children who stutter: electrophysiological evidences. Brain Disord Therapy 4(5):1–5 39. Wible B, Nicol T, Kraus N (2005) Correlation between brainstem and cortical auditory processes in normal and language-impaired children. Brain J Neurol 128(2):417–423 40. Ghannoum MT, Shalaby AA, Dabbous AO, Abd-El-Raouf ER, Abd-El-Hady HS (2014) Speech evoked auditory brainstem response in learning disabled children. Hear Balance Commun 12(3):126–142 41. Sachin MS, Kohli A, Panda N, Arya S (2019) Speech evoked auditory brainstem responses in children with learning disability. Int J Otorhinolaryngol Head Neck Surg 5(1):101–105 42. Malayeri S, Lotfi Y, Moossavi SA, Rostami R, Faghihzadeh S (2014) Brainstem response to speech and non-speech stimuli in children with learning problems. Hear Res 313:75–82 43. Song JH, Banai K, Russo NM, Kraus N (2006) On the relation- ship between speech- and nonspeech-evoked auditory brainstem responses. Audiol Neuro-otol 11(4):233–241 44. Billiet CR, Bellis TJ (2011) The relationship between brainstem temporal processing and performance on tests of central auditory function in children with reading disorders. J Speech Lang Hear Res 54(1):228–242 45. Kouni SN, Giannopoulos S, Ziavra N, Koutsojannis C (2013) Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities. Am J Otolaryngol 34(6):646–651 46. Kouni SN, Papadeas ES, Varakis IN, Kouvelas HD, Koutsojannis CM (2006) Auditory brainstem responses in dyslexia: comparison between acoustic click and verbal stimulus events. J Otolaryngol 35(5):305–309 47. Hornickel J, Kraus N (2013) Unstable representation of sound: a biological marker of dyslexia. J Neurosci 33(8):3500–3504 48. Ramezani M, Lotfi Y, Moossavi A, Bakhshi E (2019) Auditory brainstem response to speech in children with high functional autism spectrum disorder. Neurol Sci 40(1):121–125 49. Kamita MK, Silva L, Magliaro F, Kawai R, Fernandes F, Matas CG (2020) Brainstem auditory evoked potentials in children with autism spectrum disorder. J Pediatr (Rio J) 96(3):386–392 50. Russo N, Nicol T, Trommer B, Zecker S, Kraus N (2009) Brain- stem transcription of speech is disrupted in children with autism spectrum disorders. Dev Sci 12(4):557–567 51. Chen J, Liang C, Wei Z, Cui Z, Kong X, Dong CJ et al (2019) Atypical longitudinal development of speech-evoked auditory brainstem response in preschool children with autism spectrum disorders. Autism Res 12(7):1022–1031 52. Azzam H, Hassan DM (2010) Speech-evoked auditory poten- tials in attention deficit hyperactivity disorder. Audiol Med 8(3):129–136 53. Jafari Z, Malayeri S, Rostami R (2015) Subcortical encoding of speech cues in children with attention deficit hyperactivity disor- der. Clin Neurophysiol 126(2):325–332 54. Peixe BP, Silva D, Biaggio E, Bruno RS, Sanguebuche TR, Garcia MV (2018) Applicability of evoked auditory brainstem responses with complex stimuli in adults with hearing loss. Int Arch Otorhi- nolaryngol 22(3):239–244 55. Koravand A, Al Osman R, Rivest V, Poulin C (2017) Speech- evoked auditory brainstem responses in children with hearing loss. Int J Pediatric Otorhinolaryngol 99:24–29 56. Leite RA, Magliaro FC, Raimundo JC, Gândara M, Garbi S, Bento RF et al (2018) Effect of hearing aids use on speech stimulus decoding through speech-evoked ABR. Braz J Otorhinolaryngol 84(1):66–73 57. Jalaeia B, Zakariab MN (2019) Speech-evoked auditory brainstem response in children with sensorineural hearing loss. Glob J Oto- laryngol 20(4):71–80 58. Nada NM, Kolkaila EA, Gabr TA, El-Mahallawi TH (2016) Speech auditory brainstem response audiometry in adults with sensorineural hearing loss. Egypt J Ear Nose Throat Allied Sci 17(2):87–94 59. Abd El-Ghaffar NM, El-Gharib AM, Kolkaila EA, Elmahallawy TH (2018) Speech-evoked auditory brainstem response with ipsilateral noise in adults with unilateral hearing loss. Acta oto- laryngol 138(2):145–152 60. Anderson S, Parbery-Clark A, White-Schwoch T, Drehobl S, Kraus N (2013) Effects of hearing loss on the subcortical repre- sentation of speech cues. J Acoust Soc Am 133(5):3030–3038 61. Sanfins MD, Borges LR, Donadon C, Hatzopoulos S, Skarzynski PH, Colella-Santos MF (2017) Electrophysiological responses to speech stimuli in children with otitis media. J Hear Sci 7(4):9–19 62. El-Kabarity RH, Abdel Rahman TT, Abdel Kader HA, Sanyelbhaa H (2015) Effect of otitis media with effusion on brainstem timing in children. Hear Balance Commun 14(1):20–24 63. BinKhamis G, Forte AE, Reichenbach T, O’Driscoll M, Kluk K (2019) Speech auditory brainstem responses in adult hearing aid users: effects of aiding and background noise, and prediction of behavioral measures. Trends Hear 23:1–20 64. Shetty HN, Puttabasappa M (2017) Encoding of speech sounds at auditory brainstem level in good and poor hearing aid performers. Braz J Otorhinolaryngol 83(5):512–522 65. Hassaan MR, Ibraheem OA, Galhom DH (2016) Brainstem encoding of aided speech in hearing aid users with cochlear dead region(s). Int Arch Otorhinolaryngol 20(3):226–234 66. Bellier L, Veuillet E, Vesson JF, Bouchet P, Caclin A, Thai-Van H (2015) Speech Auditory Brainstem Response through hearing aid stimulation. Hear Res 325:49–54 67. Gabr TA, Hassaan MR (2015) Speech processing in chil- dren with cochlear implant. Int J Pediatric Otorhinolaryngol 79(12):2028–2034 68. Rahman TTA, Nada IM, Kader HAAA, Monem AAA (2017) Neural representation of speech in pediatric cochlear implant recipients. Egypt J Otolaryngol 33:535–545 69. Jarollahi F, Valadbeigi A, Jalaei B, Maarefvand M, Zarandy MM, Haghani H et al (2020) Sound-field speech evoked auditory brainstem response in cochlear-implant recipients. J Audiol Otol 24(2):71–78 70. Nassar AAM, Hassan DM, Younis A, Abdel Rahman TT (2020) Speech evoked potentials in cochlear implant recipients with 2118 European Archives of Oto-Rhino-Laryngology (2023) 280:2099–2118 1 3 auditory neuropathy spectrum disorder. Hear Balance Commun 1–11 71. BinKhamis G, Perugia E, O’Driscoll M, Kluk K (2019) Speech- ABRs in cochlear implant recipients: feasibility study. Int J Audiol 58(10):678–684 72. Omidvar S, Mahmoudian S, Khabazkhoob M, Ahadi M, Jafari Z (2018) Tinnitus impacts on speech and non-speech stimuli. Otol Neurotol 39(10):921–928 73. Kelly A, Purdy S (2016) Change in speech perception and audi- tory evoked potentials over time after unilateral cochlear implan- tation in postlingually deaf adults. Semin Hear 37(1):62–73 74. Kolkaila EA, Emara AA, Gabr TA (2012) Cortical auditory evoked potentials in children using hearing aids. Audiol Med 10(3):132–142 Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Speech auditory brainstem response in audiological practice: a systematic review Abstract Background Purpose Methods Results Conclusions Introduction Methods Results Speech-ABR in normal hearing Speech-ABR in auditory processing disorders Speech ABR in language disorders, phonological disorders and stuttering Speech ABR in learning disorders and dyslexia Speech ABR in autism spectrum disorder and attention deficit hyperactivity disorder Speech ABR in hearing loss Speech ABR in hearing aid and cochlear implant users Speech ABR in tinnitus Discussion Conclusion Appendix 1 Acknowledgements References