Person:
AKDEMİR, ATİLLA

Loading...
Profile Picture
Status
Kurumdan Ayrılmıştır
Organizational Units
Job Title
First Name
ATİLLA
Last Name
AKDEMİR
Name
Email Address
Birth Date

Search Results

Now showing 1 - 10 of 21
  • PublicationOpen Access
    Thiosemicarbazide-Substituted Coumarins as Selective Inhibitors of the Tumor Associated Human Carbonic Anhydrases IX and XII
    (2022-07-01T00:00:00Z) GÜMÜŞ PALABIYIK, ARZU; Bozdag, Murat; AKDEMİR, ATİLLA; Angeli, Andrea; Selleri, Silvia; Carta, Fabrizio; Supuran, Claudiu T.; AKDEMİR, ATİLLA
    A novel series of thiosemicarbazide-substituted coumarins was synthesized and the inhibitory effects against four physiologically relevant carbonic anhydrase isoforms I, II, IX and XII showed selective activities on the tumor-associated IX and XII isozymes. Molecular modeling studies on selected compounds 14a and 22a were performed. The binding modes of such compounds were determined assuming their enzymatically active structures (i.e., cinnamic acid) in the thermodynamically favored, and not previously explored, E geometry. Molecular modelling suggests multiple interactions within the enzymatic cavity and may explain the high potency and selectivity reported for the hCAs IX and XII.
  • PublicationOpen Access
    The neutralization effect of montelukaston SARS-CoV-2 is shown by multiscale in silicosimulations and combined in vitro studies
    (2021-10-19T00:00:00Z) Durdagi, Serdar; Avsar, Timucin; Orhan, Muge Didem; Serhatli, Muge; Balcioglu, Bertan Koray; Ozturk, Hasan Umit; Kayabolen, Alisan; Cetin, Yuksel; Aydinlik, Seyma; Bagci-Onder, Tugba; Tekin, Saban; Demirci, Hasan; Guzel, Mustafa; Akdemir, ATİLLA; Calis, Seyma; Oktay, Lalehan; Tolu, Ilayda; Butun, Yasar Enes; Erdemoglu, Ece; Olkan, Alpsu; Tokay, Nurettin; Işık, Şeyma; Ozcan, Aysenur; Acar, Elif; Buyukkilic, Sehriban; Yumak, Yesim; AKDEMİR, ATİLLA
    Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).
  • PublicationOpen Access
    The extremo-α-carbonic anhydrase (CA) from Sulfurihydrogenibium azorense, the fastest CA known, is highly activated by amino acids and amines.
    (2013-02-15) CARGINALE, V; CAPASSO, C; SUPURAN, CT; VULLO, D; De, Luca; SCOZZAFAVA, A; ROSSI, M; Akdemir, ATİLLA; AKDEMİR, ATİLLA
  • PublicationOpen Access
    Novel thiazolidinone-containing compounds, without the well-known sulphonamide zinc-binding group acting as human carbonic anhydrase IX inhibitors.
    (2018-12-01) DEMIR, K; Akdemir, ATİLLA; ANGELI, A; GÜZEL-AKDEMIR, Ö; SUPURAN, CT; AKDEMİR, ATİLLA
    A small collection of 26 structurally novel thiazolidinone-containing compounds, without the well-known sulphonamide zinc-binding group, were synthesised and tested in enzyme inhibition assays against the tumour-associated hCA IX enzyme. Inhibition constants in the lower micromolar region (KI < 25 lM) have been measured for 17 of the 26 compounds. Even though the KI values are relatively weak, the fact that they do not contain a sulphonamide moiety suggests that these compounds do not interact with the active site zinc ion. Therefore, docking studies and molecular dynamics simulations have been performed to suggest binding poses for these structurally novel inhibitors.
  • PublicationOpen Access
    Synthesis and biological evaluation of new chloro/acetoxy substituted isoindole analogues as new tyrosine kinase inhibitors.
    (2020-01-01T00:00:00Z) Köse, A; Kaya, M; Kishalı, NH; Akdemir, ATİLLA; Şahin, E; Kara, Y; Şanlı-Mohamed, G; AKDEMİR, ATİLLA
  • PublicationOpen Access
    Fibrate-based N-acylsulphonamides targeting carbonic anhydrases: synthesis, biochemical evaluation, and docking studies.
    (2019-12-01) GIAMPIETRO, L; AMMAZZALORSO, A; CARRADORI, S; ANGELI, A; De, Filippis; FANTACUZZI, M; MACCALLINI, C; Akdemir, ATİLLA; SUPURAN, CT; AMOROSO, R; AKDEMİR, ATİLLA
    A large library of fibrate-based N-acylsulphonamides was designed, synthesised, and fully characterised in order to propose them as zinc binders for the inhibition of human carbonic anhydrase (hCA) enzymatic activity. Synthesised compounds were tested against four hCAs (I, II, IX, and XII) revealing a promising submicromolar inhibitory activity characterised by an isozyme selectivity pattern. Structural modifications explored within this scaffold are: presence of an aryl ring on the sulphonamide, p-substitution of this aryl ring, benzothiazole or benzophenone as core nuclei, and an n-propyl chain or a geminal dimethyl at Ca carbon. Biological results fitted well with molecular modelling analyses, revealing a putative direct interaction with the zinc ion in the active site of hCA I, II and IX. These findings supported the exploration of less investigated secondary sulphonamides as potential hCA inhibitors.
  • PublicationOpen Access
    Aromatase inhibition by 2-methyl indole hydrazone derivatives evaluated via molecular docking and in vitro activity studies.
    (2019-05-01) OZCAN-SEZER, S; INCE, E; Akdemir, ATİLLA; CEYLAN, ÖÖ; Suzen, S; GURER-ORHAN, H; AKDEMİR, ATİLLA
    A causal association is reported between prolonged exposures to elevated levels of estrogen and breast cancer. Therefore inhibiting aromatase (CYP19A), which catalyses the conversion of androgens to estrogens, is an important approach in prevention and treatment of estrogen receptor positive (ER+) breast cancer. Melatonin, a natural indolic hormone, is reported to prevent free radical induced carcinogenesis and block local estrogen synthesis in breast tissue via aromatase inhibition. However several features of melatonin limit its therapeutic use. In the present study aromatase inhibiting potential of 2-methyl indole hydrazones are investigated, and compared with melatonin, by two in vitro models; a cell-free assay using a fluorescence substrate and a cell-based assay where cell proliferation was determined in ER + human breast cancer cells (MCF-7 BUS) in the absence of estrogen and the presence of testosterone. Aromatase inhibitory effect is also explored by molecular modelling studies. In biological activity assays monochloro substituted indole hydrazones were found to have stronger aromatase inhibitory activity among all tested derivatives and were more active than melatonin. This finding is further confirmed by molecular modelling. These results may be useful in the design and synthesis of novel melatonin analogues with higher inhibitory potency against aromatase.
  • PublicationOpen Access
    Indole-Based Hydrazones Containing A Sulfonamide Moiety as Selective Inhibitors of Tumor-Associated Human Carbonic Anhydrase Isoforms IX and XII
    (2019-05-01) Demir-Yazici, Kubra; BUA, Silvia; Akgunes, Nurgul Mutlu; Akdemir, ATİLLA; Supuran, Claudiu T.; Guzel-Akdemir, Ozlen; AKDEMİR, ATİLLA
    Novel sulfonamidoindole-based hydrazones with a 2-(hydrazinocarbonyl)-3-phenyl-1Hindole-5-sulfonamide scaffold were synthesized and tested in enzyme inhibition assays against the tumor-associated carbonic anhydrase isoforms, hCA IX and XII, and the off-targets, hCA I and II. The compounds showed selectivity against hCA IX and XII over hCA I and II. Six compounds showed KI values lower than 10 nM against hCA IX or XII. Molecular modeling studies were performed to suggest binding interactions between the ligand and the hCA active sites.
  • PublicationOpen Access
    Novel 2-indolinones containing a sulfonamide moiety as selective inhibitors of candida β-carbonic anhydrase enzyme.
    (2019-12-01) Akdemir, ATİLLA; ANGELI, A; GÖKTAŞ, F; Eraslan, Elma; KARALı, N; SUPURAN, CT; Inhibition of the b-carbonic anhydrase (CA, EC 4.2.1.1) from pathogenic Candida glabrata (CgNce103) by 1H-indole-2,3-dione 3-[N-(4-sulfamoylphenyl)thiosemicarbazones] 4a–m was investigated. All the compounds were found to be potent inhibitors of CgNce103, with inhibition constants in the range of 6.4- 63.9 nM. The 5,7-dichloro substituted derivative 4l showed the most effective inhibition (KI of 6.4 nM) as well as the highest selectivity for inhibiting CgNce103 over the cytosolic human (h) isoforms hCA I and II. A possible binding interaction of compound 4l within the active site of CgNce103 has been proposed based on docking studies.; AKDEMİR, ATİLLA
    Inhibition of the b-carbonic anhydrase (CA, EC 4.2.1.1) from pathogenic Candida glabrata (CgNce103) by 1H-indole-2,3-dione 3-[N-(4-sulfamoylphenyl)thiosemicarbazones] 4a–m was investigated. All the compounds were found to be potent inhibitors of CgNce103, with inhibition constants in the range of 6.4- 63.9 nM. The 5,7-dichloro substituted derivative 4l showed the most effective inhibition (KI of 6.4 nM) as well as the highest selectivity for inhibiting CgNce103 over the cytosolic human (h) isoforms hCA I and II. A possible binding interaction of compound 4l within the active site of CgNce103 has been proposed based on docking studies.
  • PublicationOpen Access
    Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold.
    (2019-12-01) De, Filippis; Rotondi, G; Guglielmi, P; De, Monte; Secci, D; Supuran, CT; Maccallini, C; Amoroso, R; Cirilli, R; Angeli, A; AKDEMİR, ATİLLA
    A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives.