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Abstract:  Background:  Glioma is  the  primary  cancer  of  the  central  nervous  system in  adults.
Among gliomas, glioblastoma is the most deadly and aggressive form, with an average life span of
1 to 2 years. Despite implementing the rigorous standard care involving maximal surgical removal
followed by concomitant radiation and chemotherapy, the patient prognosis remains poor. Due to
the infiltrative nature of glioblastoma, chemo- and radio-resistance behavior of these tumors and
lack of potent chemotherapeutic drugs, treatment of glioblastoma is still a big challenge.

Objective: The goal of the present review is to shed some light on the present state of novel strate-
gies, including molecular therapies, immunotherapies, nanotechnology and combination therapies
for patients with glioblastoma.

Methods: Peer-reviewed literature was retrieved via Embase, Ovid, PubMed and Google Scholar
till the year 2020.

Conclusion: Insufficient effect of chemotherapies for glioblastoma is more likely because of differ-
ent drug resistance mechanisms and intrinsically complex pathological characteristics. Therefore,
more advancement in various therapeutic approaches such as antitumor immune response, target-
ing growth regulatory and drug resistance pathways, enhancing drug delivery and drug carrier sys-
tems are required in order to establish an effective treatment approach for patients with glioblasto-
ma.
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1. INTRODUCTION
Cancer is the most common cause of death worldwide.

Despite the development of new advances in various thera-
peutic  approaches  and  expansion  in  current  therapies,  the
number of patients with cancer is increasing every year [1].
Over the past years, the incidence of brain tumors has also
increased  significantly  [2].  Among  the  brain  tumors,
glioblastoma is one of the most common and fatal  type in
adults [3]. In the United States, approximately 13,000 new
cases of glioblastoma are diagnosed every year; almost 90%
of these patients die within three years, and 50% of patients
die within one year after diagnosis [4]. Conventionally, the
primary therapeutic option for patients with glioblastoma in-
cludes  maximum  surgical  removal  followed  by  radiation
therapy with concurrent chemotherapy with  Temozolomide

*  Address  correspondence  to  this  author  at  the  Department  of  Neuro-
surgery,  Bezmialem Vakif  University  Medical  School,  Istanbul,  Turkey,
Fax: 02124531360; Tel: +905327612290;
E-mails: azizhatiboglu@yahoo.com, mhatiboglu@bezmialem.edu.tr
#The authors have contributed equally.

(TMZ) [5-7]. TMZ stands as the greatest breakthrough dur-
ing the past decade and has improved the progression-free
survival time and overall survival in patients with glioblasto-
ma [7, 8]. However, despite these rigorous treatments, tumor
relapse is almost inevitable due to aggressiveness of the tu-
mor and resistance to chemo- and radiation therapy [9, 10].
To date, glioblastoma remains incurable, with only a median
survival of 15 months [11].  Because the treatment options
are not sufficient to provide long-term tumor control and sur-
vival benefit, more focused investigation involving the un-
derstanding of glioblastoma tumorigenesis, chemo- and ra-
dio-resistance is required for the establishment of new thera-
peutic approaches. For this purpose, several research groups
have been studying different dimensions of therapeutic ap-
proaches,  including targeted therapies,  gene therapies,  im-
munotherapies and hormonal therapies [12-20].

The identification and development of innovative thera-
peutic strategies for the treatment of patients with glioblasto-
ma are imperious and are of critical concern. Due to the tu-
mor resistance and its unresponsiveness to the standard thera-
pies, there is an urgent need for the development of innova-
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tive strategies for patients with glioblastoma. Developing ap-
proaches for glioblastoma include various molecular thera-
pies, immunotherapies as well as their combinatorial thera-
pies along with standard adjuvant chemotherapies. The pre-
sent review aims to shed light on the currently available nov-
el therapeutics, including microRNA (miRNA) based thera-
pies,  immunotherapies,  virus-based  therapies,  nano-thera-
pies and combinational therapies targeting brain tumors, par-
ticularly glioblastoma.

2. ROLE OF CELLULAR SIGNALING
Pathway activation of different receptors of growth fac-

tors is assumed to be involved in the growth of glioblasto-
mas.  Therefore,  identifying  and  targeting  some  common
down-stream intermediates such as phosphatidylinositol 3-ki-
nase (PI3K) /protein kinase B (Akt) and Ras /Mitogen-acti-
vated protein kinase (MAPK) pathways may open new thera-
peutic alternatives. Kesari et al., have shown that Farnesyl-
transferase is involved in the signal transduction of the Ras
pathway. Lonafarnib and tipifarnib, inhibitors of Farnesyl-
transferase, have been assessed in clinical trials in glioma pa-
tients [21]. It has shown that LY294002, which is an inhibi-
tor  of  PI3K,  leads  to  the  sensitization  of  a  mutant  glioma
cell line to radiation therapy [22]. In a recent study, the im-
portance of the CD133-AKT-Wnt signaling axis was demon-
strated  in  glioma  pathogenesis.  The  authors  showed  that
CD133 functions as a cell surface receptor for the activation
of the Wnt signaling pathway in an AKT-dependent manner
in patient-derived CD133 positive glioblastoma cells. They
examined the molecular differences, such as stemness, be-
tween a high and low amount of CD133 cells and their rela-
tions with AKT-Wnt signaling. This study presented a pa-
tient based scenario for targeted therapy and could help to
improve personalized medicine by targeting the AKT signal-
ing pathways [23]. Also, Tomar et al., showed that TMZ fa-
cilitated  the  activation  of  the  Wnt/β-catenin  pathway  and
PI3K/Akt pathway in U87 glioblastoma cells. TMZ augment-
ed the expression of downstream targets of Wnt in a concen-
tration-  and time-dependent  manner.  Authors  also  showed
that mammalian target of rapamycin (mTOR) pathway acti-
vation was enhanced when combined with TMZ in glioma
cells [24]. Many studies have revealed the formation of au-
tophagosomes by the activation of AMP-activated protein ki-
nase (AMPK) in glioma cells as well as in other tumor cells
[25, 26]. Also, the activation of mTOR was inhibited by the
AMPK, therefore, this acted as an mTOR inhibitor [27]. It
has  been  shown  that  mTOR  displays  a  crucial  role  in  au-
tophagy,  particularly  in  glioma  cells  [28,  29].  It  is  estab-
lished  that  mTOR  controls  the  autophagy  in  the  cells
through the activation of eukaryotic translation initiation fac-
tor 4E-binding protein (4E-BP1) [28]. Zhao et al., demons-
trated that isogambogenic acid inhibited the phosphorylation
of 4E-BP1 in U87 glioma cells [30]. Further, isogambogenic
acid  induced  autophagy  via  activating  AMPK  expression
and subsequently downregulating mTOR expression in glio-
ma cells. Overall, their study showed that the AMPK-mTOR
pathway plays an essential role in the suppression of glioma
growth [30]. In addition to these signaling pathways, Kaya-

Aksoy et al., studied the role of Harakiri (HRK) protein in
glioblastoma pathogenesis. HRK protein is a BH3-only pro-
tein, which is one of the members of the apoptotic pathway
B-cell  lymphoma  2  (BCL-2)  family.  The  authors  showed
that the overexpression of HRK protein caused apoptosis ac-
tivation  in  glioblastoma  cells.  In  addition,  HRK  interacts
with tumor necrosis factor-related apoptosis inducing ligand
(TRAIL).  The  external  factors  that  contribute  to  the  re-
sponse of TRAIL also enhance the expression of HRK. In
their in-vivo  experiments, authors found that the enhanced
expression  of  HRK  inhibited  tumor  growth  and  improved
the survival of mice with glioblastoma [31].

3. ROLE OF MICRORNAs
The majority of the human genome encodes non-coding

RNA (ncRNA) and only a small portion (2-3%) of whole-
genome encodes  for  specific  genes  [32].  The most  widely
studied ncRNAs are the miRNAs. The miRNAs are single-s-
tranded  ncRNA  molecules  of  21-25  nucleotides  in  length
and  are  explicitly  involved  in  gene-regulation  at  the  post-
transcriptional stage (Fig. 1) [33]. They incorporate complex
mechanisms of interference involving transcription activa-
tion, upregulation of proteins, interaction with RNA binding
proteins, Toll-like receptors, and nuclear and mitochondrial
transcripts [34]. The role of miRNAs has been extensively
studied over the past decade in the pathogenesis of glioblas-
toma, although it has not been well established to date [13,
35]. Most of the studies are only limited to identify the signi-
ficance of miRNAs as a prognostic factor and biomarker for
assessing treatment response [36-38].

3.1. Selecting a Suitable MiRNA for Therapeutic Inter-
vention

It is critically important to precisely define and unders-
tand the basis for selecting a miRNA for therapeutic applica-
tions. Wightman et al., explained in the early 1990s that the
binding of lin-4 ncRNA to the 3’ untranslated region (UTR)
of lin-14 messenger RNA (mRNA) sequence led to repres-
sion of LIN-14 gene, which described the ability of miRNAs
to regulate the gene expression [39]. Over the years, promis-
ing  results  have  surfaced,  shedding  light  on  the  genetic
make-up of the human genome. Also, the advancements in
bioinformatics have speeded the process of deriving mean-
ingful models to explain the genetic complexity of the hu-
man  genome.  In  the  last  decade,  several  algorithms  have
been designed to assess the binding of miRNA to the specif-
ic  mRNA sequence  based  on  evolutionarily  conserved  se-
quence  complementarity  [40].  However,  these  algorithms
may provide vague mRNA target sites; therefore researchers
face challenges in selecting the suitable target for investiga-
tion, which can only be done by understanding the biologi-
cal function of mRNAs according to their perspective.

3.2. MiRNA Mediated Gene Suppression
Earlier studies focused on understanding the role of miR-

NAs and exploiting them as prognostic and diagnostic mark-
ers. However, the discoveries during the past decade have re-
formed the  idea for  miRNAs in  cancer research. Recently,
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Fig. (1). miRNA biogenesis begins in the nucleus of the cell with cleavage of pri-miRNA to produce stemloop structure pre-miRNA by
Drosha and DiGeorge Syndrome Critical Region 8 (DGCR8). Exportin5/Ran/GTP complex transports pre-miRNA to the cytoplasm. Dicer
and TRBP (RNA-binding co-factor of Dicer) process the pre-miRNAs to miRNA duplex, which subsequently in the presence of helicase en-
zyme forms single-stranded mature miRNA. Later, mature miRNA complexes with RNA-induced silencing complex (RISC) in which Argo-
naute-2 (AGO-2) protein plays a central role. The seed region of the miRNAs recognizes and binds the 3'UTR of the target mRNAs and may
affect the expression of genes through mRNA cleavage, translational repression, or translational activation. Current miRNA based inhibition
therapies or replacement therapies that implement mimic miRNAs and miRNA expression vectors. MiRNAs inhibitory therapies involve sup-
pressing the expression levels of oncogenic miRNAs on the contrary, replacement therapies involve the overexpression of tumor suppressor
miRNAs through the expression of vector based delivery systems. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).

few studies have attempted to explore the therapeutic aspect
of miRNAs. Cellular metabolic re-programming is catego-
rized as a hallmark for cancer development [41]. Cancer pro-
gression prompts an abnormal demand for cellular energy,
which in turn potentiates the Adenosine triphosphate (ATP)
and macromolecule production required for the proliferation
of cancer cells [42]. The biological fuel needed for this cellu-
lar metabolism is the glycolytic intermediates, which make
them  crucial  for  tumor  cell  proliferation  and  on  the  other
hand,  they  are  crucial  target  for  therapeutic  intervention
[43].  Cardoso  et  al.,  investigated  the  miRNA-based  gene
therapy in U87 and DBRTG cell lines targeting the aberrant
glycolytic markers. They explained that miRNA-144 modu-
lated the expression of enzymes involved in cellular bioener-
getics pathways such as isocitrate dehydrogenases (IDHs),
pyruvate dehydrogenase kinases (PDKs) and tumor protein
53  (TP-53)  induced  glycolysis  and  apoptosis  (TIGAR),
which in turn reduced the cell invasion and migration proper-
ties of glioma cells [44]. Brain cells are metabolically active,
generating  most  of  the  energy  from  glucose  metabolism
[45]. Thus, brain tumor cells demonstrate higher dependence
on glucose, which in turn, necessitates their metabolic adap-
tations [46]. Ogawa et al., selected the miRNA-451 as a ther-
apeutic option based on their early findings. They explained
the  existence  of  a  negative  feedback  loop  between  miR-
NA-451  and  5’  AMP-activated  protein  kinase  (AMPK),

which is arbitrated by octamer-binding transcription factor 4
(OCT-4)  transcription  factor  [47].  Later,  miRNA-451  has
been shown to reduce cellular migration of glioma cells both
in vitro and in vivo [48]. Moreover, several other cellular sig-
naling pathways have been shown to be deregulated in the
carcinogenic process. Oncogenes are considered as potential
targets in cancer therapies. BCL-W gene is categorized as an
oncogene, which is associated with tumor progression and
metastasis [49]. A study demonstrated the therapeutic effect
of miR-340-5p in BCL-W oncogene overexpressing U87 and
U251 glioblastoma cells. Initially, they observed that condi-
tioned medium of BCL-W overexpressing glioblastoma cells
presented  enhanced  tumorigenic  phenotypes  such  as
platelet-derived  growth  factor-A  (PDGF-A)  and  cancer
stem-like cell-related protein SRY-Box Transcription Factor
2  (SOX-2).  Also,  the  transfection  of  these  cells  with
miR-340-5p mimic downregulated the expression of BCL-W
and SOX-2, thereby reducing invasion and cellular migration
in glioblastoma cells [50]. In a similar study, high expres-
sion  of  fibronectin  was  shown  to  be  associated  with  poor
prognosis in patients with glioblastoma. It was reported that
miRNA-1 expression is inversely related to fibronectin ex-
pression in orthotropic NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG)
mouse  models  generated  via  MT330  cells.  The  study  ex-
plained  that  animals  implanted  with  miRNA-1  expressing
cells demonstrated high survival with low infiltrative tumors
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compared with animals implanted with control luciferase-ex-
pressing  cells.  The  authors  suggested  tumor-suppressive
function  of  miRNA-1  through  inhibiting  fibronectin  in
glioblastoma [51]. Further, Xu et al., suggested that integrin
subunit alpha 9 (ITGA9) plays a prominent role in the prolif-
eration and invasion of glioblastoma and can be a potential
target for the targeted therapy. They explained that the over-
expression of miRNA-148a led to reduced cell proliferation,
invasion and migration in LN229 and U87 cells. Also this
was  shown  to  inhibit  tumor  growth  in  xenograft  models
[52].

Acquired drug resistance is one of the major factors for
treatment failure in patients with glioblastoma. In a very re-
cent  study,  chemosensitizing  effects  of  miRNA-181a  and
carmustine  were  evaluated  in  the  U373  glioblastoma  cell
line. The authors reported that miRNA-181a negatively regu-
lated the proliferation of U373 cells via PI3K/AKT signal-
ing. They found that miRNA-181a in combination with car-
mustine increased the apoptosis induction through modulat-
ing the expressions of B-cell lymphoma 2 (Bcl-2), caspase-9
and Sirtuin 1 (SIRT1) genes. Also, they reported aberration
in cell cycle progression through increased G1 cell cycle ar-
rest.  Moreover,  combining  carmustine  therapy  with  miR-
NA-181a decreased the clonogenic ability of U373 cells and
inhibited cell migration by downregulation of matrix metal-
lopeptidase  2  (MMP-2),  BTB  and  CNC  homology  1
(Bach1). Their results suggested that a combination of miR-
NA-181a  and  carmustine  could  be  a  potential  therapy  for
glioblastoma  [53].  Moreover,  a  recent  study  showed  that
miRNA-128a in combination with temozolomide treatment
reduced the proliferation and migration of glioblastoma in
vitro and in vivo. Further, their bioinformatics investigation
revealed c-Met as the target gene for miR-128a. Their study
concluded that c-Met, a receptor tyrosine kinase (RTK) pro-
tein, was a suitable target to enhance the chemosensitivity in
U87 cells towards temozolomide [54].

Combinatorial approaches offer better chances for a posi-
tive outcome. Considering this,  Bhaskaran et al.,  explored
the concept of functional synergism to enhance the therapeu-
tic efficacy of miRNA based therapy against glioblastoma.
The authors hypothesized that incorporating more than one
anti-tumor miRNA may provide an additive effect compared
to a single miRNA treatment. They investigated the therapeu-
tic  effect  of  three  antitumor  miRNAs  (miRNA-124,  miR-
NA-128 and miRNA-137) in the glioblastoma mouse model
system. Initially, the authors confirmed the low expression
of  miRNA-124,  miRNA-128  and  miRNA-137  and  conse-
quently  confirmed  higher  expression  levels  of  their  target
genes,  BMI1,  EZH2  and  LSD1  oncogenes  in  both  in  vitro
and in vivo studies. The authors later developed a lentiviral
vector-based gene therapy to carry transgene encoding miR-
NA-124, miRNA-128 and miRNA-137 (cluster 3) [55]. Fur-
thermore,  to  improve  the  antitumor  efficacy  of  cluster  3,
they also showed that extracellular vesicles could be a more
promising option [55, 53]. It is of utmost importance to ad-
dress that targets of these miRNA are derived using databas-
es and in-silico approaches, which poses a risk of unknown
non-specific  binding of  these  miRNAs.  Recapitulating the

above-mentioned  studies,  miRNA-based  therapeutics
showed potential to be translated in clinical settings (Fig. 1).

4. IMMUNOTHERAPIES
Over the last decades, the use of immunotherapy for vari-

ous brain tumors has intensely grown and resulted in a better
understanding of the interaction between the central nervous
system (CNS) cancers and the immune system (Fig. 2). Im-
munostimulatory gene therapy and immune checkpoint in-
hibitors might prove as a promising therapeutic approach for
treating  patients  with  glioblastoma.  Among  the  various
types of immunotherapies, T cell immunotherapy has recent-
ly become a promising therapy for brain tumors [56-58].

4.1. Immuno-regulators and Cytokines
Cytokine  based  therapies  hold  great  potential  for  the

treatment of cancer. They are a group of intracellular mes-
sengers that are capable of stimulating multiple cellular path-
ways. They are best known to stimulate and recruit immune
cells in response to infection or abnormal cell proliferation
[59, 60]. It is a well-known fact that there are several factors
involved in the immunosuppression mechanism in glioblasto-
ma. In their study, Quail and Joyce stated that several im-
mune cells such as T cells, microglia and macrophages are
recruited  to  the  microenvironment  of  glioblastoma  and
showed immune-suppressive activities [60]. The immune re-
sponse in glioblastoma can be inhibited by various immune--
suppressive  cytokines  such  as  transforming  growth  factor
β-1  (TGF-β-1)  and  interleukin  (IL)-10  [61].  Also,  it  has
been well established that glycoprotein A repetition predomi-
nant (GARP), which is a surface receptor present on activat-
ed regulatory T cells, plays a central role in the suppression
of  immune  response  in  the  tumor  microenvironment.  Fur-
ther, it has been found that GARP has an inhibitory effect on
T  effector  cells,  and  leads  to  tumor  progression  [62].
Another clinical study attempted to investigate the role of im-
plemented peptide inhibitors to overcome the barrier of tu-
mor-induced immune suppression. The authors targeted the
activation  receptor  of  CD200  checkpoint  (CD200AR)  via
peptide inhibitor (CD200AR-L) in the macrophage cell line.
The  inhibitory  peptide  enhanced  the  antigen-specific  im-
mune response and also suppressed the expression of pro-
grammed death-1  (PD-1)  and CD200 inhibitory  receptors.
Moreover, CD200AR-L also induced the dendritic cell matu-
ration and cytokine/chemokine response [63]. Due to the im-
munomodulating effects of cytokines, researchers have rec-
ognized them as therapeutic targets for many types of tumor,
including glioblastoma [64]. Most of the glioblastoma cells
express  T  cell  inhibitory  ligands  and  secrete  transforming
growth  factor  β  (TGF-β).  TGF-β2  is  a  possible  target  for
glioblastoma therapy because this cytokine is known to stim-
ulate immunosuppression, tumor invasion and angiogenesis
[65]. Hjelmeland et al., also reported that the growth of glio-
ma is inhibited by using SB-431542, an inhibitor of the cy-
tokine TGF-β2 in pre-clinical trials [65]. Also, TGF-β2 an-
ti-sense oligonucleotides (AP12009) have been shown to ex-
ert anticancer activity without toxic side effects in early clini-
cal trials [21]. In a similar study, Prasad et al., reported that
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Fig. (2). Present immunotherapy strategies for glioblastoma: Oncolytic virus (OV) therapy, involves engineered designed to target tumor
cells only. OV infection leads to tumor cell lysis and consequently triggers the immune response via dendritic cells (DC). In addition to that,
some OV induce the release of immunoregulatory molecules like interleukin-15 (IL-15), interleukin-18 (IL-18), interferon (IFN) and inter-
leukin-12 (IL-12) which can trigger immune system via DC, natural killer cells (NK) and macrophages (Φ). In adaptive immune response,
DCs presents tumor antigens, virus particles or immunoregulatory molecules to Cytotoxic T lymphocytes (CTLs) via Major Histocompatibili-
ty Complex (MHC) class II and T cell receptor (TCR) on T cells or via surface receptors CD86 or CD80 on DC cells and CD28 on T cells.
CTLs are responsible for destroying glioblastoma cells that are presenting antigens located on MHC class I molecules, through TCR and
CD3 interactions. Immune checkpoint regulation involving Cytotoxic T lymphocyte ligandcytotoxic T lymphocyte protein (CTLA-4) com-
plex and programmed cell death 1 ligand 1 (PD-L1) receptor which located on the cell surface of glioblastoma cells can interact with pro-
grammed cell death 1 receptor (PD-1) located on CTLs play a crucial role in the inhibition of activated lymphocytes. Also, transforming
growth factor-beta (TGF-β) from tumor cells inhibit CTL function making it a therapeutic target. Checkpoint inhibition therapy is based on
averting this ligand binding by specific monoclonal antibodies/inhibitors which bind to these receptors. Genetically engineered CD8+ T cells
(CAR T), namely anti-HER2, anti- IL-13Ra2 and anti-EGFRvIII are designed to target respective tumor specific antigens HER2, IL-13Ra2
and EGFRvIII located on the cancer cell surfaces and eliciting tumor immune response. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).

six of nine patients administered with IL-4 fused to Pseudo-
monas exotoxin (IL-4 cytotoxin) showed necrosis in tumors,
without causing any damage to the neighboring tissues [64].
Furthermore,  due  to  these  promising  results,  phase  II/III
trials  are  in  progress.  Also,  the  expression  of  osteopontin
(OPN)  in  glioblastoma and its  role  within  the  immune re-
sponse have been studied [66]. OPN is a type of glycophos-
phoprotein, which also contains an arginine-glycine-aspar-
tate (RGD) motif. To investigate its association with various
grades of glioma, they silenced the OPN gene implementing
siRNA and  CRISPR/Cas9  methods  in  the  mice  models.  It
was suggested that glioblastoma with higher expression of
OPN correlated with shorter survival. The knock-out OPN
gene  consequently  resulted  in  a  reduction  of  M2
macrophages in gliomas. Also, glioma cells became sensi-

tive to CD8+ T cell cytotoxicity. Therefore, the authors re-
port that OPN is responsible for communication between the
innate  immune  system  and  glioma  cells  and  this  feature
could  be  used  as  a  target  for  immune  therapy  approaches
[66].

4.2. T Cell-based Therapies
Engineered T cell therapy has gained attention as a possi-

ble effective therapeutic approach for cancer. Previously, dif-
ferent malignancies such as sarcoma, leukemia, melanoma
and lymphoma have been treated using engineered T cells in
clinical  trials  [67-69].  However,  the  use  of  engineered  T
cells in treating solid cancers is still scarce. Presently, the en-
gineered  T  cell-based  therapy  is  being  designed  to  target
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solid  tumors,  including  glioblastoma  [17,  70].  In  recent
years, promising anticancer effect of chimeric antigen recep-
tor  (CAR)-T  cell  therapy  for  various  cancers  has  been
shown, and Food and Drug Administration (FDA) has also
permitted  two  CAR-T  products  commercially  [71-73].
CAR-T cell therapy is also being used for glioblastoma with
promising results. The CAR-T cell therapy can enhance the
survival of mice with glioma significantly by targeting the
epidermal  growth  factor  receptor  variant  III  (EGFRvIII),
which is  expressed in approximately 30% of patients with
glioblastoma [70]. Morgan et al., developed EGFRvIII tar-
geted CAR-T cells using T cells from patients with glioblas-
toma  and  confirmed  its  therapeutic  effect  in  vitro  against
glioma stem cell lines [74]. However, glioblastoma is charac-
terized by high molecular heterogeneity within a single tu-
mor [75]. This heterogeneous nature of glioblastoma limits
the  efficacy  of  the  treatment  via  evading  the  targeted  im-
mune response. A recent study aimed to find an appropriate
solution  for  tumor  cells  evading  from  CAR-T  cells.  In
search  for  a  novel  target  for  CAR-T cells,  Nehama et  al.,
suggested  B7-H3  as  a  potential  novel  target,  which  was
found  to  be  highly  expressed  in  clinical  specimens.  They
showed that B7-H3 targeted CAR-T cells demonstrated high-
er efficiency in targeting the tumor growth in both patien-
t-derived neurospheres in vitro and murine xenograft models
in vivo [76]. Treatment of in vitro CAR-T cells may not al-
ways be successful in patients with glioblastoma due to the
presence of inhibitory ligand expressions like programmed
death-ligand 1 (PD-L1) [77]. Therefore, Choi et al., worked
on a universal EGFRvIII CAR-T cell, which can resist inhi-
bition  of  PD-1  throughout  three  gene  disruptions  with  the
help of the CRISPR-Cas-9 system. These designed CAR-T
cells  showed increased activity  in  studies  on glioblastoma
models [77]. Furthermore, Brown et al., demonstrated that
the  routes  of  infusion  of  CAR-T  cells  to  a  patient  with
glioblastoma played a critical role in showing anti-tumor ef-
fect [17]. Their case study evaluated 2 delivery routes, in-
cluding intraventricular infusion and infusion into the resect-
ed  tumor  cavity  for  interleukin-13  receptor  alpha  2
(IL13Rα2) targeting CAR-T cells in a patient with recurrent
glioblastoma. Although both routes (intraventricular and in-
tracavitary)  demonstrated  a  low  toxicity  pattern,  but  they
showed  different  efficacy  in  suppressing  tumor  growth  in
distant sites.  The intracavital  delivery of IL13Rα2-CAR-T
cells abrogated local tumor recurrence but the appearance of
new distant lesions was observed. In contrast, the intraven-
tricular delivery route demonstrated the suppression of local
and distant tumor sites in all central nervous system [17].

4.3. Combinational Imunotherapies
Combinational  therapies  with  the  addition  of  im-

munotherapy to the chemotherapies are still under investiga-
tion.  Several  recent  studies  have  explained  different  ap-
proaches  to  enhance  the  current  immunotherapies  against
glioblastoma. Park et al., showed the combinational effect of
anti-PD-1  and  TMZ in  an  orthotopic  murine  glioblastoma
model and they demonstrated a higher anti-tumor effect with
combination treatment  compared to  treatment  alone group

[78]. One study investigated a neo-adjuvant therapy regime
that could enhance the effect on anti-PD-1 immunotherapy
[18]. They divided the patient group randomly as adjuvant
anti-PD-1 immunotherapy and neo-adjuvant therapy. The pa-
tients in the neo-adjuvant group received 200 mg pembrol-
izumab before surgery, while patients in the adjuvant group
did  not  receive  any  pembrolizumab  before  surgery.  Post-
surgery, both groups received adjuvant pembrolizumab with
a  dose  of  200 mg every  three  weeks.  They found that  pa-
tients who received the neo-adjuvant treatment showed a de-
cline in gene expressions in the tumor, which are related to
cell  cycle and increment in T cell  population compared to
the patients who received only adjuvant therapy. It was ex-
plained  that  neo-adjuvant  inhibition  of  PD-1  monoclonal
antibody  induced  an  interferon  response  in  the  tumor  mi-
croenvironment. Activated interferon response was mediat-
ed through activation of interferon-γ producing tumour-infil-
trating  lymphocytes  and  suppressing  PD-1/PD-L1  [18].
Moreover,  Wu  et  al.,  showed  that  the  combination  of  an-
ti-PD-1 and anti-CXCR4 exerted an additive effect and im-
proved immune response in the tumor microenvironment, re-
sulting in increased survival in murine models [79]. The im-
portance of immunotherapies with checkpoint inhibitors has
been  well  established  in  various  types  of  cancer,  yet  their
role is not well defined in patients with glioblastoma and fur-
ther studies are warranted to explore their therapeutic bene-
fits [80].

4.4. Personalized Immunotherapies
In the past several years, the identification of neo-anti-

gens  that  can  be  implemented  for  developing  novel  im-
munotherapies has been under investigation. Keskin et al.,
described the effect  of  a  personalized neo-antigen vaccine
with multi-epitope in glioblastoma patients. The authors in-
vestigated the effect of the vaccine on patients with newly di-
agnosed glioblastoma with  non-methylated  methylguanine
methyltransferase (MGMT) status in phase I/Ib study. The
patients underwent vaccine treatment after surgical resection
of the tumor, which was analyzed for neo-antigen identifica-
tion. The patients, who received the neo-antigen vaccine but
did not receive dexamethasone, were found to have an in-
creased  number  of  tumor-infiltrating  T  cells  and  a  higher
number of CD8+ and CD4+ T cells specific to the given neo-
antigen. Furthermore, they showed that neo-antigen vaccine
could travel to the tumor itself through peripheral blood cir-
culation [81]. Hillman et al., showed that the vaccination of
MVA-MUC1-IL2 cancer vaccine (TG4010) after irradiation
with a dose of 8 Gy enhanced the survival of RenCa-MUC1
cell injected mice compared to irradiation or vaccine alone
treatment [82]. Remy-Ziller et al., also reported in their pre-
clinical studies that the combination of immune checkpoint
inhibitors,  anti-PD-1  or  anti-PD-L1,  with  the  TG4010
vaccine, led to the suppression of tumor growth compared to
the vaccine alone in a mouse model with CT26-MUC1 tu-
mors  [83].  Similarly,  dendritic  cells  (DCs)  play  a  crucial
role  in  anti-tumor immunity  because of  their  capability  of
forming an immune response against the tumor. Therefore,
DCs can be explored as a new approach for immunotherapy.
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It was reported that patient-derived myeloid circulating den-
dritic cells (cDC2) with inhibited p38 mitogen-activated pro-
tein kinase pathway (p38i) showed promising results in pre-
liminary studies. Also, they have proposed clinical trials to
investigate  this  future  next-generation  DC  vaccine  for
glioblastoma  [12].

5. VIRUS MEDIATED ONCOSUPPRESSION AND IM-
MUNOMODULATION

The basis of virus-based therapies originated as an obser-
vation in leukemia patients showing no cancer growth after
viral infection [84]. This clinical observation did not go un-
noticed by the medical community and consequently, utiliza-
tion of viruses in the treatment of cancer was initiated. Earli-
er investigations involved wild type viruses that lacked any
efficacy or safety [85]. In the late 1990s, virus-based cancer
therapies  re-emerged  as  “Oncolytic  Virus  (OV)”.  OV is  a
virus that can infect and kill a cancer cell without posing any
harm to normal cells [86]. Rapid development in recombi-
nant  molecular  biology  has  enabled  the  development  of
more precise and targeted virus-mediated therapies (Fig. 2).
Recombinant viruses can be used to elicit the expression of
antigen, which is specific to the tumor and can also genetical-
ly modify the cells. Moreover, these viruses can directly al-
ter tumor microenvironment and tumor cells via up-regulat-
ing major histocompatibility complex, activation of inflam-
matory  pathways  and  enhanced  antigen  expression  [87].
Jiang et al., reported that in mice injected with B16 melano-
ma cells, co-delivery of the adenoviral vector carrying IL-12
gene and SB-505124 (TGF inhibitor) considerably reduced
the tumor growth and enhanced the survival of the animals
[88].  Moreover,  it  is  also  known  that  in  a  broad  range  of
host cells, significant level of transgene expression can be
obtained  by  recombinant  virus-based  genetic  modification
of cells [89]. In gene therapy, viral vectors can function as
immunomodulating agents or exert tumor inhibition effects
based on the genome modifications [90, 91]. In contrast to
viral  vaccines,  which are mostly used to alter  the immune
cells, oncolytic viruses can directly infect tumor cells [92].
Genetically modified viruses or viruses, which are non-viru-
lent in humans, have been used to enhance the specificity of
viral oncolysis [90]. The incorporation of genes to boost the
immune  response  against  tumor  cells  is  also  possible
through  genetic  modification  of  the  viral  genome  [93].
Mathis et al., reported that oncolytic viruses require specific
host cell surface receptors to bind and enter their target cells
[94]. For instance, oncolytic viruses such as Herpes simplex
virus  type  2  (HSV-2)  bind  to  nectin-1,  nectin-2  and  her-
pesvirus entry mediator (HVEM) receptors, whereas oncolyt-
ic viruses based on HSV-1 bind the cells which have 3-O-
sulfate modified heparin, HVEM and nectin-1 surface recep-
tors [95]. Of these various oncolytic viruses, HSV-1 based
treatments are the most commonly used therapies. Waters et
al.,  reported  that  deactivating  insertion  of  lacZ  in  UL39,
which is known to encode the larger unit of ribonucleotide
reductase (RR) of the virus, leads to RR inactivation. This,
in turn, enhances the specificity of the virus towards cancer
cells  (which  have  a  higher  level  of  endogenous  RR,  thus

complementing deficiency of viral RR) and thereby improv-
ing the safety of normal cells from the attack of viruses [96].
Nakatake et al., also showed both in vivo and in vitro anti-tu-
mor  capability  of  oncolytic  viruses  [97].  Moreover,  these
viruses have shown promising results in the clinical setting
and were documented to induce tumor cell death in clinical
trials [98]. Alessandrini et al., explained the recuperative ef-
fect  of  oncolytic  HSV on  glioblastoma.  They  targeted  the
ERB-2 human gene by virulent R-115 type of HSV enclosed
with murine IL-12. These viruses were used in the murine
glioblastoma models and the researchers observed the disap-
pearance of the tumor in approximately 30% of the animals.
Since this study revealed promising findings in the treatment
of glioblastoma with oncolytic viruses, further clinical evalu-
ation is still under investigation [14].

There  are  studies  that  also  used  the  oncolytic  viruses
with  chemotherapies.  The  combination  of  different  treat-
ments  can  enhance  anti-tumor  responses.  For  example,  a
combination of ipilimumab and T-Vec is used in Phase Ib
trial to treat patients with melanoma. The objective response
rate was higher with the combination treatment (39%) com-
pared to the ipilimumab alone (18%). Additionally, the effi-
cacy  of  the  combination  of  Paclitaxel  and  T-Vec  and  the
combination of  immune checkpoint  inhibitors  durvalumab
and  JX-594  has  also  been  examined  in  clinical  trials  [99,
100].  In  a  recent  study,  the  use  of  a  hybrid  bacteriophage
vector  designed  for  suicide  gene  therapy  with
RGD4C/AAVP-Grp78  and  its  combination  therapy  with
TMZ was investigated. It was seen that tumor-specific Grp
78 promoter of glucose-regulated protein expression was am-
plified with the help of TMZ and the trans-gene expression
of RGD4C/AAVP-Grp78 was also enhanced in glioblasto-
ma. This combination resulted in the suppression of growth
in glioblastoma [101]. A study involving rapid angiogenesis
mediated by the oncolytic virus (RAMBO), investigated vas-
culostatin expressing HSV-1 in an in vitro and in vivo glio-
ma model. Specifically, HSV-1 in combination with beva-
cizumab, decreased the invasion property of tumor cells in
vitro. Further, they reported that the size of the tumor was
small  and  the  survival  rate  of  the  mice  was  higher  in  the
combination treatment group. In addition to these, RAMBO
also decreased the expression of several  molecules,  which
are  known to  be  increased  by  bevacizumab,  such  as  AKT
phosphorylation  and  cysteine-rich  protein  61  (CYR61)
[102]. Oncolytic viruses without any genetic alterations com-
bined with reovirus therapy have shown a small increase in
the median overall survival of mice with glioblastoma [103].
Based on a large amount of data, a substantial number of on-
colytic viruses have reached the platform of clinical trials,
however, these oncolytic vaccinations also have some side
effects, including nausea, anemia, fever/chills, neutropenia,
and thrombocytopenia [98, 104]. Therefore, virus-mediated
therapies can be seen as a promising therapeutic option, al-
though there is much to be explored in terms of side-effects
and clinical applications.

6. NANO-THERAPIES FOR GLIOBLASTOMA
Nano-technology is a new era in different fields of bio-

logical sciences. During the last decade with several techno-
logical advancements, nanomaterials have emerged as a po-



1708   Current Neuropharmacology, 2021, Vol. 19, No. 10 Khan et al.

tent  therapeutic  option  for  glioma  (Fig.  3)  [105].  For  ins-
tance,  liposome-based nano-complexes encapsulating wild
type  p53  plasmid  called  SGT-53  were  investigated  in
GL-261 glioblastoma model system. These nano-complexes
in combination with anti-PD-L1 therapy, enhanced the im-
mune response, inhibited tumor growth and increased intra-
tumoral T cell infiltration in both in vitro and in vivo studies
[50]. Moreover, Seo et al., produced a nano-particle that spe-
cifically targets miRNA-21, which is an oncogenic miRNA
and highly expressed in glioblastoma. They investigated two
different  delivery  systems  comprising  nano-conjugates
around RNA based anti-miRNA-21 conjugated either with
cationic  poly  (amine-co-ester)  (PACE)  or  peptide  nucleic
acid (PNA). This complex was further accompanied by the
block copolymers  of  poly  (lactic  acid)  and hyperbranched
polyglycerol  (PLA-HPG).  These  nano-formulations  sup-
pressed the expression of miRNA-21, which led to apoptosis
and inhibition of tumor growth. Besides, their combination
with TMZ increased chemosensitivity and overall survival
in the animal model [106]. The blood-brain barrier (BBB) is
an important limiting factor to establish effective treatment
for patients with glioblastoma. To overcome this problem,
Galstyan et al., prepared the biopolymer scaffold, which con-
tained immunoconjugates (NICs) on the nanoscale binding
to check-point inhibitors such as PD-1 and cytotoxic T-lym-
phocyte associated antigen 4 (CTLA-4). This nano-biopoly-
mer crossed the BBB and affected the immune cells within
the tumor microenvironment  in  glioblastoma mice models
[107]. Similarly, to enhance the efficacy of transportation of
the chemotherapeutic drug to the tumor site, Kadiyala et al.,
designed special nano-disc vesicles by mimicking high-den-
sity lipoprotein (HDL) that  contains a Toll-like receptor 9
(TLR9), CpG and chemotherapeutic agent docetaxel. These
vesicles thrived to enter the tumor microenvironment and ac-
tivate the immune responses through cytotoxic CD8+ T cells.
In  addition  to  that,  the  combination  of  these  nano-discs,
which are disc-shaped lipid bilayers of 8-16 nm in diameter,
with radiotherapy inhibited tumor progression and increased
the survival in in vivo glioblastoma models [108]. Similarly,
Bastiancich et al., used a nano-capsule called Lauroyl-gemc-
itabine lipid hydrogel (GemC12-LNC), which can reach the
solid tumors in mouse models. Furthermore, they combined
these  nano-capsules  with  Paclitaxel  (PTX)  for  therapeutic
use to determine whether they would increase the effect of
PTX on tumor compared to PTX alone treatment. They re-
vealed  that  the  combination  of  PTX-GemC12-LNC  en-
hanced  the  cytotoxicity  in  tumor  cells.  Therefore,  the  re-
searchers paved a new nano-delivery platform for novel com-
bination therapeutics [16]. Nano-technology can be utilized
with some other novel therapeutic approaches. For instance,
in a study, researchers showed a novel nano-delivery system
named ATN-RNA, which is a polyethyleneimine (PEI) coat-
ed magnetic nanoparticle containing double-stranded RNA
(dsRNA) in glioblastoma. They reported that this ATN-R-
NA suppressed its target mRNA, tenascin-C (TN-C) expres-
sion and also prevented the migration of tumor cells.  This
established  nano-material  also  demonstrated  high  contrast
properties  on  magnetic  resonance  imaging  (MRI)  [19].

Zhang et al., attempted a combination of nano-material with
immunotherapy.  They  targeted  the  tumor-associated
myeloid cells (TAMCs) and their highly expressed PD-L1.
They designed an anti-PD-L1 antibody on a lipid nano-parti-
cle  (LNP),  called  αPD-L1-LNP.  These  LNPs decrease  the
immunosuppressive  abilities  of  TAMCs.  Moreover,  their
combination with radiotherapy enhanced the overall survival
in syngeneic CT2A and GL261 glioma mouse models [109].
To  summarize,  nano-therapies  are  the  precisely  targeted
drug delivery systems and represent a strong potential to en-
hance the effectiveness of the current therapeutic approaches
for treating glioblastoma.

7. COMBINATION THERAPIES

7.1. Combination of Small Molecule Inhibitors
The infiltrative nature of the glioblastoma exerts resis-

tance to conventional therapies. Therefore, there is a need to
develop combinational regimens of different treatments to at-
tain  maximum therapeutic  benefits.  For  example,  as  com-
pared to radiotherapy alone, the combination of radiotherapy
with TMZ after surgery leads to a remarkable enhancement
in the survival time of patients with glioblastoma [7, 110].
Additionally,  the  combination  of  two  or  more  anti-tumor
agents having different targets can also become a possible
option for treating patients with glioblastoma. For instance,
a combination of a tyrosine kinase inhibitor (imatinib mesy-
late) and microtubule-stabilizing agent (patupilone) showed
a better  anti-tumor effect  in the rat  glioma model  as com-
pared to either therapy alone [111]. Similarly, the combina-
tion of therapeutic agents targeting several receptors such as
AEE788  (EGFR  and  Vascular  endothelial  growth  factor
(VEGFR)  inhibitor),  sorafenib  (Ras  kinase,  VEGFR  and
platelet-derived growth factor receptor (PDGFR) inhibitor),
SU011248  (cKit,  VEGFR  and  PDGFR  inhibitor)  and
ZK222584 or PTK787 (PDGFR and VEGFR inhibitor) may
have importance for the treatment, as the amplification or ex-
pression  of  these  receptors  is  altered  in  glioblastoma.  Be-
sides, the combination of inhibitors of various downstream
signaling pathways also has the potential for the treatment of
glioblastoma. Goudar et al.,  reported that  the combination
treatment of RAD001 (mTOR inhibitor) and AEE788 led to
significant inhibition of tumor growth in the mouse glioma
model as compared to either therapy alone [112]. Further-
more,  it  was  reported  that  the  combination  of  WP1066,  a
phosphorylated signal transducer and activator of transcrip-
tion  (p-STAT3)  inhibitor,  and  Minocycline  prevented  the
growth of U87 cells [113]. The authors found enhanced ex-
pression of a cleaved fragment of caspase 3 showing that the
combination of WP1066 and Minocycline led to cell death
via caspase-dependent apoptosis [113]. On the other hand,
the combination of cyclophosphamide and modified vaccine
Ankara-5T4 did not enhance the immune response with the
addition of the vaccine [114]. In addition, the combination
of a VEGFR inhibitor (SU5416) and a direct angiogenesis in-
hibitor (endostatin) led to a decrease in the growth of tumors
in glioma xenograft models as compared to either treatment
alone [115].
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Fig. (3). Schematic representations of novel therapeutic nano-conjugate systems for targeted therapies against glioblastoma. (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article).

7.2. Combination of Small Molecule Inhibitors with
Chemotherapies

An additional promising therapeutic option includes the
combination of chemotherapy or radiotherapy with targeted
molecular therapy. Overexpression of EGFR pathway also
led to resistance to the treatment with chemotherapy or radio-
therapy [21, 116]. Thus, combining the chemotherapy or ra-
diotherapy with targeted EGFR therapy may enhance the ef-
ficacy of the selected treatment. Similarly, the combination
of TMZ and thalidomide has been found to be more effec-
tive  in  glioblastoma  patients  as  compared  to  either  single
therapy  [117].  We  investigated  the  inhibitory  potential  of
genistein in U87 cells. We found that genistein, in combina-
tion with Gamma Knife radiosurgery (GKR), enhanced the
cytotoxicity and significantly inhibited the p-STAT3 signal-
ing pathway compared with genistein and GKR alone (un-
published  data).  A  combination  of  low  dose  TMZ  with  a
COX-2 inhibitor (rofecoxib) showed promising anti-angio-
genic  activity  in  glioblastoma  patients  [118].  In  a  recent
study,  TMZ therapy was  compared with  a  combination of
Lomustine and TMZ therapy for newly diagnosed glioblasto-
ma patients with methylated MGMT promoter. It was shown
that Lomustine and TMZ therapy indeed was more effective
compared with TMZ therapy alone; however, further investi-
gations are needed since it  was a trial  with a small  cohort
[119].  Similarly,  HGF/cMET  signaling  pathway  has  been

shown to play a crucial role in tumor progression and angio-
genesis of glioblastoma [120]. We have investigated the ef-
fect of Altiratinib, which is a known inhibitor of tyrosine ki-
nases with cyclophosphamide in U87 and T98 glioblastoma
cell lines. Our preliminary in vitro  findings suggested that
the combination treatment effectively inhibited the prolifera-
tion of U87 and T98 cells and induced apoptosis. Moreover,
this  combination  also  inhibited  the  expression  of  MET  in
both U87 and T98 cells more efficiently compared to Altira-
tinib alone (Unpublished data). Although combination thera-
py stands as a potent option for effective therapy, it is cru-
cial to decide the combination partners carefully. In a recent
study, the researchers investigated the treatments such as an-
ti-Ang-2/VEGF-A and anti-VEGF-A alone and in combina-
tion along with  radiotherapy and TMZ in glioma patients.
They showed that anti-VEGF-A alone was suitable for com-
bination with radiotherapy; moreover, the combination of an-
ti-Ang-2  and  anti-VEGF-A along  with  chemotherapy  pre-
sented promising results. Thereby, investigating the underly-
ing complex interactions between drug components in com-
binatorial  therapies  is  crucial  [121].  In  another  study,
Chuang et al., used a different combination therapy that in-
cluded exosomes, which are secreted by glioblastoma-associ-
ated  macrophages  (GAMs),  and  pacritinib.  In  this  study,
they  co-cultured  the  glioblastoma  cells  with  these  GAMs
and they observed that TMZ resistance of glioblastoma cells
was enhanced. They found some responsible factors such as
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STAT3, miRNA-21-5p and SOX2 for chemo-resistance. Al-
so, they reported an increased level of secretion of TGF-β,
IL-6  and  M2  cytokines  in  glioblastoma  cells.  After  their
treatment  with  pacritinib,  both  STAT3  and  SOX2  were  in-
hibited and stem cell-like properties and tumorigenesis were
decreased. Similarly, miRNA-21 levels, which were secret-
ed from GAMs, and M2 cytokine secretion were observed to
be decreased [122]. Taken all together, combination therapy
showed  many  advantages  since  it  can  target  diverse  sub-
types of cancer cells as well as reduce the systemic toxicity
caused by a high dose of single therapy. Therefore, targeting
diverse subpopulations of glioblastoma cells could prove a
potential  therapeutic  approach  for  glioblastoma  patients,
however,  this  entails  more  investigation.

8. CONCLUSION AND FUTURE PERSPECTIVES
The therapeutic advancements for patients with glioblas-

toma during the last decade have not significantly increased
the overall survival. The last most significant breakthrough
in  the  treatment  of  glioblastoma  was  the  introduction  of
TMZ together  with radiotherapy,  which showed some im-
provement in the survival of the patients. However, recur-
rence is almost inevitable due to the diffuse and infiltrative
nature  of  glioblastoma  and  its  resistance  to  the  therapies.
Moreover, the BBB also represents an obstacle for drug in-
terventions. It is crucial to develop a novel translational ther-
apeutic  strategy  to  address  the  poor  prognosis  of  patients
with glioblastoma. In recent years, we have gained insight in-
to  the  underlying  molecular  mechanisms  of  glioblastoma,
which has contributed to the development of new strategies
to inhibit tumor growth. Identification of novel molecular tar-
gets has become easier with the advent of high throughput
sequencing and freely available clinical data along with ad-
vanced bioinformatics techniques. Also, targeting the deregu-
lated  cellular  signaling  pathways  with  small  inhibitory
molecules or miRNA based gene therapies presents a suit-
able therapeutic option. The developments in the field of im-
munotherapies  are  significant  and  have  attracted  the  re-
searchers’ attention across the globe. One of the major con-
cerns in designing targeted therapy for patients with glioblas-
toma is the bioavailability of the drug molecule. Surpassing
BBB and enhancing drug availability in the tumor can be en-
hanced via nano-drug delivery systems. The implementation
of viruses and nanoparticles in enhancing the delivery and
transport of novel therapies could be important.

The future of glioblastoma therapeutics is still blooming
and unraveling several new dimensions for achieving more
targeted  and  effective  treatment  strategies.  Combinational
therapies  seem  like  the  best  option  for  treating  heteroge-
neous  and  aggressive  brain  tumors  such  as  glioblastoma.
Overall, novel targeted therapies in combination with nano-
based drug delivery systems could also be a promising treat-
ment option in the future. Further studies are warranted to in-
vestigate  new  therapeutics  and  particularly  combinational
therapies for patients with glioblastoma.
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