
and vast microbial community with up to 1011-1012 
microorganisms colonizing the colon. The gut microbiota 
has a serious effect on homeostasis and pathogenesis 
through a number of mechanisms. In recent years, 
the relationship between the intestinal microbiota and 
sporadic colorectal cancer has attracted much scientific 
interest. Mechanisms underlying colonic carcinogenesis 
include the conversion of procarcinogenic diet-related 
factors to carcinogens and the stimulation of procarcino-
genic signaling pathways in luminal epithelial cells. 
Understanding each of these mechanisms will facilitate 
future studies, leading to the development of novel 
strategies for the diagnosis, treatment, and prevention 
of colorectal cancer. In this review, we discuss the 
relationship between colorectal cancer and the intestinal 
microbiota.

Key words: Sporadic; Colorectal; Cancer; Intestinal; 
Microbiota

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Microbiota’s role in providing intestinal homeo-
stasis is not as an audience, but it is active. Both the 
composition of microbiota and its metabolic activity 
impact the sensitivity of the host and can cause many 
pathologies including colorectal cancer.
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INTRODUCTION
Colorectal cancer is the third commonest cancer type 
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Abstract
The human gastrointestinal tract hosts a complex 
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worldwide and causes 600000 deaths every year[1]. 
Because colorectal cancer patients are frequently 
asymptomatic in the early phase of the disease, 
diagnosis at this stage presents a significant clinical 
challenge. Detection of early stage cancers (stages 1-2) 
allows curative surgery with a 5-year survival rate of 
80%. However, survival rates decrease to approximately 
10% for metastatic and late stage tumors[2]. Although 
there are currently methods for the early diagnosis 
methods, including computed tomography, colonoscopy, 
and blood tests, it is expected that evaluation of the 
intestinal microbiota will prove to be a valuable method 
allowing earlier diagnosis of colorectal cancer. 

In humans, a relationship between cancer and 
microorganisms has been demonstrated in a number 
of organs, with the most well-known example being 
the relationship between Helicobacter pylori and 
gastric cancer and mucosa-associated lymphoid tissue 
lymphoma[3].

In adults, while the bacterial population in the 
stomach and small intestine is smaller (103-104 CFU/g 
contents), increased concentrations of microorganisms 
are found in the colon (1011-1012 CFU/g contents) 
compared with the upper gastrointestinal tract. The 
majority of these microorganisms exist in a favorable 
symbiotic relationship with humans[3,4]. The intestinal 
microbiota develops specific to individual variation and 
environmental conditions beginning at birth[5].

Recently, etiology of colorectal cancer has been 
shown to be related to genetic mutations, diet, infla-
mmatory processes, lifestyle, and the gut micro-
biota, with up to 95% of colorectal cancer thought 
to sporadically develop in individuals with no genetic 
predisposition[6].

The colonic microbiota is thought to contribute to 
the development of colorectal cancer by controlling 
the epithelial cell proliferation and differentiation, 
synthesizing essential nutrients and bioactive products, 
preventing the reproduction of pathogenic organisms, 
and stimulating the immune system[7]. In this review, 
studies investigating the role of the intestinal microbiota 
in the development of colorectal cancer development 
are discussed.

MICROBIOTA OF THE HUMAN INTESTINE
There are 100 billion bacteria in the human intestine 
with an approximate weight equivalent to 1.5-2 kg. 
Bacteroidetes and Firmicutes are the major species 
of the adult intestinal microbiota with the next most 
frequent species being Actinobacteria, Proteobacteria, 
and Verrucomicrobia[8].

Normally, colonic bacteria exist in a mutually 
beneficial symbiotic relationship with humans without 
adverse effects on the host cells. In situations where 
this balance is deregulated because of a number of 
possible causes, the numbers and species of harmful 
bacteria increase, providing a basis for the development 
of inflammatory and chronic disease. Changes in the 

intestinal microbiota have been shown to be associated 
with obesity, fatty liver, type 1 and 2 diabetes, kidney 
disease, arthritis, inflammatory bowel disease, and 
colorectal cancer[9-13]. However, the precise relationship 
between changes in the microbiota and colorectal 
cancer has yet to be fully elucidated.

FACTORS INFLUENCING 
GASTROINTESTINAL MICROBIOTA
The intestinal microbiota is affected by a number of 
factors, such as antibiotics, diet, and inflammation[4-18]. 
A number of studies have reported a high degree of 
similarity in the intestinal microbiota between members 
of the same family but a low degree of similarity 
between heterozygous mice despite being housed in the 
same cage[9,14,19].

The intestinal microbiota of mice fed standard low-
in-fat nutrients has been shown to change within a few 
weeks with particularly great changes in the composition 
of Bacteroidetes and Firmicutes species. After mice 
returned to a low-fat diet, a particularly significant 
reduction in Mollicutes, a species of Firmicutes, was 
observed[9,20]. Similar changes have observed with diets 
high in fat, particularly in obese people, genetically 
obese mice, and obesity-resistant mice[9,14,21]. Transfer 
of colon microbiota from mice fed a high-fat diet to 
mice fed a low-in-fat diet has been shown to accelerate 
tumor growth suggesting diet-induced changes in the 
colon microbiota may have a synergistic effect with 
genetic factors on tumor development[22]. Diet-related 
changes in intestinal microbiota have also been shown 
to be associated with colorectal cancer[23].

MICROBIAL INFLUENCE ON 
COLORECTAL CANCER
The relationship between the intestinal microbiota and 
disease has drawn increased attention in recent years. 
In particular, recent studies have demonstrated strong 
associations between the development of colorectal 
cancer and intestinal bacteria. In these studies, DNA 
damage caused by superoxide radicals, genotoxin 
formation, increased T-cell proliferation, and activation 
of procarcinogenic pathways through a number of 
receptors have all been shown to contribute to cancer 
development[24-27].

The enzymatic activation or detoxification of 
carcinogens, and therefore modulation of their tumori-
genic activity, has been shown to be influenced by 
the intestinal microbiota[24,28-35]. In the 1960s, it was 
observed that germ-free rats exposed to the glycoside, 
cyasin, did not develop intestinal tumors. Conversely, 
germ-free rats directly exposed to methylazoximethanol, 
a sub-active metabolite of cyasin, did develop intestinal 
tumors[36]. As the formation of methylazoximethanol 
depends on bacterial β-glucosidase enzyme activity[36], 
this study was a potent demonstration of the effect 
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of the intestinal microbiota on bioactive carcinogenic 
compounds. Subsequent research has revealed that 
the intestinal microbiota converts latent carcinogens to 
bioactive forms through a number of enzymes, including 
β-glucuronidase, β-glucosidase, azoreductase, and 
nitroreductase[37]. Azoxymethane (AOM) is the most 
frequently used experimental colon carcinogen. AOM is 
first hydrolyzed in the liver to methylazoximethanol and 
conjugated to glucuronic acid before bilious excretion into 
the intestine where it is converted into a highly reactive 
methyl carbon ion by bacterial β-glucuronidase[34,37,38]. 
Interestingly, it has been reported that inhibition of 
β-glucuronidase activity significantly decreases the 
tumor-inducing potential of AOM in rats[39]. Furthermore, 
probiotic bacteria, such as Lactobacillus and Bifidobac
terium species, have been shown to have anti-
carcinogenic effects through the inactivation of microbial 
enzymes involved in procarcinogenic activation[40]. 
For example, Lactobacillales, such as L. Casei and L. 
Acidophilus suppress β-glucuronidase, azoreductase, 
and nitroreductase activity[41,42]. This balance between 
the activation and detoxification of potential carcinogens 
underlies the activation of host oncogenes and tumor 
suppressors (Figure 1).

In the study by Boleij et al[43] investigating the 
expression of the Bacteroides fragilis gene (BFT) in 
colonoscopic samples from 49 healthy individuals and 
49 colorectal cancer patients, BFT gene expression was 
detected more frequently in samples from colorectal 
cancer patients. When comparing early and late 
stage cancer patients, BFT gene expression was more 
frequently detected in late stage cancer patients.

DNA damage and chromosomal instability are early 
genetic events in the development of colorectal cancer. 
As with aneuploidy, chromosomal instability is associated 
with long-term inflammatory bowel disease (IBD) 
and frequently a precedent event in the subsequent 
development of colorectal cancer[44-46]. Enterococcus 
faecalis (E. faecalis), an intestinal bacteria, has been 
repeatedly found to induce aneuploidy in colonic epithe-
lial cells in monoassociated interleukin (IL)-10 -/- rats 
and cause aggressive colitis[47,48]. Inhibitors of reactive 
oxygen and nitrogen species can prevent aneuploidy 
induced by E. faecalis[49]. These findings demonstrate 

that intestinal microbiota (particularly specific species) 
can induce RONS and lead to carcinogenesis.

In intestinal hemostasis, the protective role of 
the microbiota is thought to be through an effect on 
epithelial cell proliferation and apoptosis. The main 
mechanism underlying this effect has been proposed 
as the conversion of dietary fiber into short chain 
fatty acids (SCFA), such as acetate, propionate, and 
butyrate, through microbial fermentation. These SCFAs, 
particularly butyrate, are readily absorbed easily by 
the colon and are used as a primary energy source. In 
addition to significant anti-inflammatory effects[50,51], 
SCFAs stimulate cell proliferation and differentiation 
in non-neoplastic normal colon, promote intestinal 
hemostasis, and the resolution of intestinal injury[51,52]. 
In addition, SCFAs demonstrate a trans-effect on 
cancer cells. In particular, butyrate induces apoptosis 
in colorectal cancer cell lines through a number of 
mechanisms but predominantly via inhibition of histone 
deacetylase and activation of intrinsic/mitochondrial 
apoptosis[53-57].

However, SLC5A and GPR109A, the two major 
receptors of butyrate, provide protection in the early 
phases of tumorigenesis as they are frequently inacti-
vated in human cancers[58-60]. It is believed that 
regulation of microbiota species responsible for the 
production of butyrate will have efficacy in the treatment 
of gastrointestinal diseases[61,62]. Therefore, probiotics 
and in-absorbable food are thought to alter the intestinal 
microbiota leading to a beneficial increase in the 
production of short chain fatty acids[63].

Although the development of colorectal cancer has 
not been attributed to any specific microorganism, 
a number of cancer-promoting bacteria have been 
identified (Table 1).

In rats, Helicobacter hepaticus increases the 
development of colorectal cancer related to experi-
mental colitis and spontaneous colorectal cancer[65,67]. 
Bacteroides fragilis is a widespread intestinal bacteria 
and a potential cause of spontaneous colon tumori-
genesis in rats as an enterotoxigenic variant[26].

Exclusion of opportunist pathogens by colonic bac-
teria may represent a natural defense against colorectal 
cancer. Similarly, food containing species of Lactobacillus 
and Bifidobacteria, used as probiotics, provide a 
number of protective benefits against inflammatory 
bowel diseases[93-95]. Upon colonizing the host and on 
the condition of the formation of an additional biofilm, 
probiotic bacteria have been shown to prevent the 
adhesion and invasion of pathogen types, maintain host 
tight junction protein structure, decrease host cytokine 
production, modulate inflammation and immunity, and 
neutralize carcinogens and toxins[96-100].

Intestinal microbiota have been shown to cause 
the release of host antibacterial lectins, stimulate 
antimicrobial host epithelial responses, and deplete 
subsets of potentially pathogenic bacteria providing a 
protective role against abnormal immune responses.

In a study by Sobhani et al[81] of 179 individuals 
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Figure 1  The factors releated to intestinal microbiota promotes neoplasia 
in the gastrointestinal tract.
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was no significant difference in the Proteobacteria 
types between the two groups; however, Prevotella, 
Lactobacillus, and Treponema were more frequently 
detected in healthy rats. Furthermore, while Fusobac-
terium was not observed in healthy rats, it could be 
identified specifically in cancer rats[90]. In a study of 
feces samples from healthy individuals and colorectal 
cancer patients, Akkermansia muciniphila was identified 
4 times as often in colorectal cancer patients than 
healthy individuals[92].

As emphasized in many studies discussed above, 
intestinal microbiota have a substantial impact on 
intestinal health through controlling the immune 
and inflammatory response to individual species of 
intestinal microbiota, the activation or detoxification 
of carcinogens, the stimulation of DNA damage and 
chromosomal instability, dysregulation of the balance 
between proliferation and apoptosis, and prevention of 
invasion by pathogens.

CONCLUSION
Although colorectal cancer development is a complex 
process, recent studies have shown that the microbiota 
is actively involved.

Recently, we have developed a greater under-

undergoing colonoscopy (60 colorectal cancer, 119 
normal), significantly greater levels of Bacteroides/
Prevotella bacterial DNA were found in patients with 
colorectal cancer. Further, it was shown that a greater 
proportion of IL-17 immunomodulatory cells were 
isolated from patients with colorectal cancer.

In a study by Gao et al[88] in 2015 examining colon 
samples from 30 healthy and 31 cancer patients, 
distal and proximal colon microbiota from both healthy 
individuals and cancer patients were evaluated using 
the 16S RNA V3 sequence. No significant difference 
was observed between proximal and distal colon 
microbiota; however, in patients with colorectal cancer, 
Firmicutes and Fusobacteria were over-represented 
and Proteobacteria were under-represented. Further, 
Lactococcus and Fusobacterium were identified more 
often, and Pseudomonas and Escherichia–Shigella less 
often, in tissues from patients with colorectal cancer 
compared to those without cancer[88]. 

In a study by Zhu et al[90] using the 1,2-dime-
thylhydrazine cancer model, V3 sequences of 16S 
ribosomal RNA isolated from intestinal microbiota 
samples from rats with cancer and healthy rats were 
determined. While Firmucutesin was more frequently 
observed in rats with colorectal cancer, Bacteroidetes 
and Spirochetes were less commonly observed. There 
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  Bacteria Subject 
of study 

Evidence Ref.

  Helicobacter 
  hepaticus

Animal Augments azoxymethane induced, and spontaneous colorectal cancer in mice [64-69]

  H. hepaticus + H.bilis Animal Dual infection induces colorectal cancer in mice [70,71]
  H. typhlonius + H. rodentium Animal Dual infection in neonates induces colorectal cancer in mice [72,73]
  Streptococcus bovis Human S.bovis bacteremia and endocarditis associated with human colorectal cancer [74-77]

Animal Augments azoxymethane induced colorectal cancer in rats [78]
Human Increased humoral immune response to S.bovis antigenRpL7/L12, sassociated with increased risk for 

colorectal cancer
[79]

  Bacteroides fragilis Animal Enterotoxigenic B.fragilis augments spontaneous colorectal cancer in mice [26]
Human Increased prevalence of enterotoxigenic B.fragilis in human colorectal cancer [80]
Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [81]
Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [43]

  B. vulgatus Animal Induces azoxymethane induced, colorectal cancer in mice [82]
  Escherichia coli Human Increased mucosa-associated Escherichia coli in human colorectal cancer [83]
  Citrobacter rodentium and C. freundii Animal Etiologic agent of transmissible murine colonic hyperplasia [84]

Animal Augments spontaneous and 1,2 dimethylhydrazine induced colorectal cancer in mice [85,86]
  Fusobacterium nucleatum Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [87]

Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis and 16S ribosomal 
RNA 

Gene V3 pyrosequencing analysis

[88]

Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [89]
Animal 16S ribosomal RNA

Gene V3 pyrosequencing analysis
[90]

  Enterococcus faecalis Human Increased in the feces of colorectal cancer patients by quantative PCR analysis [91]

  Furmicutes Animal 16S ribosomal RNA
Gene V3 pyrosequencing analysis

[90]

  Akkermansia muciniphila Human 16S ribosomal RNA
Gene V4 pyrosequencing analysis and Gas Chromatography-Mass Spectrometry

[92]

  Methanobrevibacterium Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis and 16S ribosomal RNA
Gene V3 pyrosequencing analysis in fecal samples

[89]

Table 1  The relationship between bacterial types and colorectal cancer

PCR: Polymerase chain reaction; RNA: Ribonucleic acid; H. Hepaticıus: Helicobacter hepaticus; H. bilis: Helicobacter bilis; H. typhlonius: Helicobacter typhlonius; H. 
Rodentium: Helicobacter rodentium; B. vulgatus: Bacteroides vulgatus; C. freundii: Citrobacter freundii.
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standing of the effect of the microbiota on bowel health 
and diseases, including esophagitis/Barrett’s esophagus, 
stomach cancer, IBD, and colorectal cancer. However, 
while a strong relationship between gastrointestinal 
diseases and the microbiota content is evident, many 
questions remain unanswered. One of the most clinically 
challenging issues is to understand how a change in 
intestinal microbiota will likely impact on the course of 
disease. Knowledge obtained from dysbiotic microbiota 
research in germ-free animals and clinical studies 
involving a variety of intestinal diseases will help provide 
answers to these important questions. Further, there is 
currently a lack of data regarding which microorganisms 
in the microbiota cause disease and are protective.

Continuous improvements in the development of 
increasingly cost-effective research methods, gene 
sequencing technology, and high productivity techniques 
are expected to provide substantial information regarding 
the healthy and dysbiotic microbiota composition. This 
information will facilitate functional experiments utilizing 
cause and effect animal models.

Understanding the relationship between pathology 
and the microbiota is important; however, the role 
of microbiota in pathogenesis has yet to be fully 
elucidated. Therapeutic microbial transplantation has 
been trialed in metabolic syndrome and also has utility 
in the treatment of colorectal cancer; however, this 
technique has many limitations including infection and 
the promotion of autoimmune disease. Despite this, 
there is hope that treatments targeting the human 
microbiota may provide therapies for the prevention 
and treatment of colorectal cancer in the future.

In summary, the microbiota plays an active role 
in intestinal homeostasis. Both the composition of 
microbiota and its metabolic activity have an impact 
on the host susceptibility to disease and can directly 
contribute to a number of varied pathologies, including 
colorectal cancer.
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