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Introduction

Poor retention and instability of dentures are the chief rea-
sons for functional problems and complaints in edentulous 
patients. Bone resorption is often remarkably greater in the 
mandible than in the maxilla in these patients.1 Due to this 
natural process in the mandible, there is a need to increase 
retention and support of overdenture prostheses in con-
junction with implant rehabilitation.2 Since several studies 
reported3,4 high success rates for implant rehabilitation, 
overdentures have become an acceptable alternative for 
patients with severe residual ridge resorption. In addition 
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to the increased retention and stability that an implant-
supported overdenture (ISOD) allows, further advantages 
over conventional complete dentures include increased 
comfort and chewing abilities,1,5 protection of the residual 
ridge, and an enhanced quality of life.6

According to the McGill Consensus Statement of 2002, 
the primary treatment option for edentulous patients is 
ISOD using two solitary implants in the mandible.2,3 
Mandible overdentures planned with two implants satisfy 
the requirements for treatment and lead to low surgical 
damage of tissue; this method also costs less and is the 
simplest proper prosthodontic procedure.7 The abutment 
types commonly used for the two implant-supported man-
dible overdentures include bars of different designs as well 
as balls and magnets.8-11 The recently presented locator 
system has been widely used by dentists and has gained a 
considerable market share in the implant industry.8 It has 
been introduced as an alternative single attachment against 
the most used retention system, which is called the ball 
anchor system. Although both stud attachment systems 
have been used for several years in the implant industry, 
there remains a lack of detailed information about them. 
There are various opinions regarding the superiority of 
each, the various implant heights, and mucosa thickness on 
the stress distribution.12,13

The soft tissue structure and shape around the bone and 
the implant types used might affect the stress distribution 
in the cortical bone that is located in the peri-implant zone. 
Overloading situations may also cause wearing out of parts 
of the implant system or micro/macrofracture of the 
implant due to the incompatibility between components or 
failure of the implant due to crestal bone loss.8,14 Height of 
the attachment and mucosa thickness are also important 
factors in the design of ISODs. To reduce the lever arm 
effect that increases the level of stress transmitted to the 
peri-implant bone, the attachment must be as short as pos-
sible. The height of the attachment also influences space 
requirements inside the denture, and fractures may occur 
with insufficient acrylic resin thickness.15,16 Mandible 
bone resorption can occur at various levels in the right and 
left side of the anterior mandible.17 This condition intro-
duces the need to use an attachment with a different 

vertical height level, such that two independent implants 
can be positioned at the same occlusal height, parallel to 
the occlusal plane. If one implant was higher than the 
other, the prostheses would disengage from the lower 
implant during function and would rotate primarily on the 
higher implant. This situation accelerates the wear of the 
attachment on the lower implant, and because the higher 
implant receives the majority of the occlusal load, an 
increased amount of crestal bone loss can occur.18,19

Similarly to other bones, mandibular bone can be 
regarded as a composite material.20 Polymers and fiber-
reinforced polymers can be used to replicate the mandible 
spongy and cortical bones, respectively.21 The mandible 
model used within this investigation is a photoelastic poly-
mer based on an epoxy resin.22 It has an elastic modulus of 
about 2 GPa,23 thus the elastic properties of our model is in 
between the moduli of spongy and cortical bone.24

A variety of techniques are used to simulate the mathe-
matical and visual evaluation of the stress distribution of 
the implant and bone during chewing in the mouth. These 
are photoelastic stress analysis (PESA), two-dimensional 
(2D) or three-dimensional (3D) finite element analysis 
(FEA), and strain-gauge (SG) analysis.25 Experimental SG 
analysis on mandible models is essential to calibrate theo-
retical FEA mandible models.26 Among these methods, 
PESA eliminates the variations caused by the patient or the 
operator performing the experiment. This technique has 
been extensively used to investigate the interaction of tis-
sue response and stress distribution among implant–bone 
prosthetic restorations and physical properties of implants 
in dentistry.27-29 Several studies have evaluated stress dis-
tribution between the same heights of attachments using 
FEA1,5 and SG;30 the effects of implant angulation and 
prostheses connection have also been investigated,31 but 
there is no study that evaluates different heights of attach-
ments by using PESA. Therefore, the aim of this in vitro 
study was to evaluate the influence of different heights of 
attachments and mucosa thickness for two different 
ISODs, namely, the ball and locator attachment (Figure 1), 
on the vertical pressure and stresses around the implant 
surface bone under unilateral loading on overdenture pros-
theses using PESA method.

Figure 1.  (A) Ball Attachment. (B) Locator Attachment.
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Materials and methods

Preparation of acrylic and photoelastic models

An edentulous mandible wax model (Poliwax, Bilkim 
Kimya, Izmir, Turkey) was fabricated and shaped in the 
same vertical height level for both sides of the mandible. A 
wax model was obtained from a patient who had adequate 
bone height of the mandible. This model was duplicated 
twice, and the midline of the second wax model was 
marked with a digital caliper. The left mandible area was 
diminished 1 mm below the right side (1 mm–2 mm). The 
third wax model was also shaped as the left side of the jaw 
was 3 mm lower than the right side (1 mm–4 mm). Then, 
three master wax models (1 mm–1 mm, 1 mm–2 mm, 1 
mm–4 mm) were obtained and duplicated; the six models 
were obtained to produce two of each of the master mod-
els. These wax models were turned into six edentulous 
mandible acrylic models (Meliodent; Heraeus Kulzer, 
Hanau, Germany, Figure 2).

The acrylic models were polished with 320-, 400-, or 
600-grid silicon carbide abrasive paper. Two perforations 
were made in the canine areas with a parallelogram 
(Orthofex, Fogászat Gyártơ, KFT, Budapest, Hungary) 
and a distance of 22 mm between each of the two canine 
teeth was set in a similar manner to that in the mouth.27,32 
Screw-type implants (Fixture OsseoSpeed™ Implant, 
Astra Tech, Mölndal, Sweden), 4.0×11 mm, were placed 
into holes in the acrylic models. Stud attachments, namely, 
the ball and locator, were merged with implants on the 
models. Using a drill at the top of the parallelogram, the 
height difference between implant levels was checked on 
both sides of the mandible to determine the reference 
point; ball attachment levels were checked from there at 
the peak point, while locators were controlled from their 
buccal points. Precise adjustments were made by checking 
the lines indicating the change in mm of the up-and-down 
movement on the side of the parallelogram to determine 
whether the vertical heights were the same. Thus, the 

implants were positioned evenly on top of the alveolar 
ridge. Six silicone impressions (Zetaplus, Zhermack, 
Rovigo, Italy) were derived from acrylic models that have 
implants and then photoelastic resin material (PL–2 and 
PLH–2; Vishay Measurements Group, North Carolina, 
USA) based on an epoxy resin was poured into the silicone 
molds according to the manufacturer’s recommendations.

Creation of mucosa morphology

As the prosthetic ending process on the model can create 
stress, the negatives of models were obtained with silicone 
impressions and stone models were prepared. Models were 
measured with a digital caliper from the center of the stone 
mold to the middle of the implants, and the same measured 
distance was marked on the distal side of the implants as a 
horizontal projection. These areas were defined as the lim-
its for the determination of different mucosa heights while 
arranging the process of mucosa heights. Posterior edentu-
lous areas of photoelastic models were fixed by light-
polymerized base plates (Vertex U.V. Light Curing 
Trayplast, Vertex Dental, Zeist, Netherlands) at a 3 mm 
thickness to represent soft tissue thickness.33,34

Mucosa around the implant of the two models of 1 mm–
2 mm were prepared as 2 mm around the implant on the 
left side and 1 mm around the implant on the right side, 
while mucosa around implant circles of the 1 mm–1 mm 
models were prepared with a base plate with a thickness of 
1 mm. In the two remaining models, to simulate mucosa 
thickness a 4-mm base plate was used in the left side of the 
implant and was set in 1-mm base plates in the right side of 
the implant. However, the base plate thickness was 2 mm 
(Figure 3), and 1 mm thickness was needed. The base plate 
was then thinned homogeneously on the glass plate with 
the help of a glass cup until it reached 1 mm.

Standardization of dentition and prosthetics 
finishing procedures

Pink modeling wax was placed on the mandible model 
with the mucosa height base plate set and the artificial 
teeth were set up (Figure 4). Then, a silicon mold was 
made from this denture to standardize the tooth arrange-
ment for all models. After the wax was removed with hot 
water, the mold in which the teeth were placed for a trans-
parent acrylic (Orthoplast, Vertex Dental, Zeist, 
Netherlands) was polymerized by heat. The mucosa-
formed gypsum model was placed into a silicon mold with 
hand pressure, and the overflows were removed and placed 
in a Biodent oven (Dikan 105, Mersin, Turkey) for 10 min-
utes at 2.5 bar at 55°C to polymerize the transparent 
acrylic. By using a transparent material in the construction 
of the prostheses, it was hoped that light would pass 
through the model in order to observe the stress lines.27,33 
Ball and locator abutments were mounted on the models 

Figure 2.  Acrylic models prepared according to different 
mucosa heights and then be converted to photoelastic models 
by placing ball and locator attachments (1 mm–1 mm; 1 mm–2 
mm; 1 mm–4 mm).
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using a torque switch with a force of 25 Ncm (Astra Tech, 
Mölndal, Sweden). While the process kits were put on the 
locator abutments, titanium thread pieces were put on the 
ball abutments. Overdenture prostheses were fitted to the 
photoelastic models by adding transparent acrylic to the 
inner surfaces of the prostheses to accommodate the 
female parts.35 They were then placed in the Biodent oven 
again for polymerization. To simulate the mucosa in the 
photoelastic model, a fluid-like elastic material (Gingifast; 
Zhermack SpA, Badia Polesine, Italy) was inserted into 
the gap created by the light-polymerized base plate on the 
inner surfaces of the prostheses, and prostheses were 
shaped to clearly view the stress lines around the implants 
during the photographing of the photoelastic models 
(Figure 5).

Mounting of models in the polariscope device 
and loading

Before application of loading, all photoelastic models were 
checked by photograph using a circular polariscope to 
ensure that any stress-fringe was or was not in the models.36 

Mineral oil (Castrol, Istanbul, Turkey) was varnished on all 
models in order to facilitate photoelastic observation dur-
ing evaluation. The loading process was carried out on a 
universal test machine (TSTM 02500, Elista Ltd., Istanbul, 
Turkey). A total of 135 N force was applied to the central 
fossa of both first molar teeth in the vertical direction.27,32 
This load amount was chosen since it is close to the highest 
bite force measured in patients who use ISODs.37 This 
loading region was chosen because it is located in the zone 
where chewing strength is highest in patients using ISODs, 
as the most effective elevator muscles are in this zone.27,32

The results of stress tests of the models were observed 
by a digital camera that was equipped with a macro lens 
(Macro Lens-Canon EF 100 mm F/2.8, Canon Inc. 
Headquarters, Tokyo, Japan) to obtain clear images (Canon 
EOS 650D, Canon Inc. Headquarters, Tokyo, Japan). A 
ring flash (Sigma EM 140 DG; Sigma Corporation, New 
York, USA) was used to prevent the beam from shading the 
image, and to ensure that the illumination of the photo-
graphed pattern was identical in each region. Models were 
kept at 50°C for 20 min in an oven to eliminate residual 

Figure 3.  (A) Frontal and (B) Occlusal view of different mucosa heights during preparation by light-polymerized base plates which 
created gap for fluid-like elastic material for inner surfaces of the prostheses.

Figure 4.  Standardized artificial teeth arrangement to use in 
all models. The impression was taken by this master model so 
that obtained guidance teeth model transferred to all other 
models from this master model to ensure standardization of all 
models.

Figure 5.  Appearance of finished prostheses with mimic 
mucosa before occlusal loading on photoelastic models. 
Prostheses were shaped to clearly view the stress lines around 
the implants during the photographing of the photoelastic 
models.
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stress in the photoelastic models after each loading.34 
Before each installation, the models were examined in the 
polariscope device to make sure there were no stress accu-
mulation lines. The stress concentrations and their sites 
were subjectively compared by the same evaluator. The fol-
lowing terminology was used to interpret stress intensity 
(number of fringes) in the polariscope under white light:28

1.	 Low stress – 1 or 0 fringes,
2.	 Moderate stress – 2 or 3 fringes,
3.	 High stress – more than 3 fringes.

Results

Similar stress fringes were observed in terms of attach-
ment types with the same alveolar bone level in each 
implant side; therefore, only the results from the right side 
are presented. However, both attachments’ patterns and 
implants with the different alveolar bone levels are pre-
sented from both right and left-side loading. Before 
occlusal loading, each model was examined to ensure that 
there was no residual stress.

Right-side loadings

Ball attachment 1 mm–1 mm abutment height model.  Sym-
metrically moderate stress values were observed in the api-
cal region of the implant on the force-applied side. The 
mesial coronal region of the implant had a moderate stress 
spread over a large area. Moderate stress was observed in 
the mesial apical region of the contralateral implant. Mid-
span moderate stress was observed in the coronal distal 
region (Figure 6(a)).

Ball attachment 1 mm–2 mm abutment height model.  At the 
right apical side of the implant, the mesial and distal 

regions were found to have moderate stresses, while the 
collar region had low stress. Low stress was observed dis-
tal to the apical side of the contralateral implant, and low 
stress was also found in the mesial aspect (Figure 6(b)).

Ball attachment 1 mm–4 mm abutment height model.  In the 
apical region of the implant on the loading side, a moder-
ate stress was observed symmetrically. Stress in the apical 
region spread widely from the distal side of loading 
implant to the alveolar crest. Low stress was observed in a 
very narrow area of the mesial apical of the contralateral 
implant (Figure 6(c)).

Locator attachment 1 mm–1 mm abutment height 
model.  Moderate stress fringes were observed at the apical 
side of the loading side implant and at the mesial apical 
triplet, and low stress was observed in the distal coronal 
region. Moderate stress was observed along the mesial 
axis of the contralateral implant and at the distal apical 
area. In the apical region, a narrow field of moderate stress 
was observed (Figure 7(a)).

Locator attachment 1 mm–2 mm abutment height 
model.  Moderate stress was observed on the apical right 
side of the implant. In the distal middle triple zone mod-
erate stress was observed, and moderate stress was also 
observed in the coronal region. Moderate stress was 
observed in the alveolar crest region between the two 
implants near the alveolar crest. Stress was observed 
moderately on the contralateral mesial apical triplet 
(Figure 7(b)).

Locator attachment 1 mm–4 mm abutment height 
model.  Stress was observed moderately on the apical side 
of the implant on the loaded side. In the mesial apical tri-
ple, there was a moderate stress. Moderate stress was also 

Figure 6.  (A) Stress patterns of ball attachment 1–1 mm loading from right side. (B) Stress patterns of ball attachment 1–2 mm 
loading from right side. (C) Stress patterns of ball attachment 1–4 mm loading from right side. (D) Stress patterns of ball attachment 
1–2 mm loading from left side. (E) Stress patterns of ball attachment 1–4 mm loading from left side.
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observed in the apical of the opposite side of the implant. 
No stress was observed in the coronal regions between 
implants (Figure 7(c)).

Left-side loadings

Ball attachment 1 mm–2 mm abutment height model.  Mod-
erate stress value was observed at the apical side of the 
implant on the loading side. In the distal coronal region, 
moderate stress was observed. A moderate stress distribu-
tion was observed over a wide area between coronal 
regions of the implants. At the apical side of the contralat-
eral implant, moderate stress was observed (Figure 6(d)).

Ball attachment 1 mm–4 mm abutment height model.  At the 
apical left side of the implant, moderate stress was 
observed. Stress was observed in the middle apical triple 
region and moderate stress was seen in the distal apical 
triple and coronary when stress was detected (Figure 6(e)).

Locator attachment 1 mm–2 mm abutment height model.  At 
the apical and coronal side of the implant on the side of 
loading, moderate stresses were observed. In the alveolar 
crest region between the two implants, medium stress was 
found spreading over a large area near the crest. Stress was 
observed moderately at the apical side of the contralateral 
implant (Figure 7(d)).

Locator attachment 1 mm–4 mm abutment height 
model.  Moderate stress was observed around the implant 
on the side of the loading. At the apical side of the con-
tralateral implant, a moderate stress event was observed 
(Figure 7(e)).

Discussion

In this study, the 1 mm–1 mm mucosa thickness models 
showed lower stress values than those obtained from  

models with 1 mm–2 mm and 1 mm–4 mm mucosal thick-
nesses. This difference was determined to be greater in the 
locator model than in the ball attachment model. As a fur-
ther consequence of the study, in models with different 
mucosal thicknesses, more stress was observed around the 
implant which is on the force-loading side.

In the literature, stresses on implants in ISOD prosthe-
ses are usually determined by PESA.27-29,32-35,38,39 The pho-
toelastic mandible model used in current study consisted 
of integration of the implants with the epoxy resin, which 
simulates the bone tissue and also impression material in 
the ISOD to represent the mucosa around the stud 
attachments.32,34

The absence of differences between cortical and tra-
becular bone, despite the resin being used to produce pho-
toelastic mandible models with a modulus of elasticity 
similar to bone tissue, might modify the magnitude of the 
stress concentrations. However, neither the location of 
stress concentrations nor the behavior would be changed 
substantially.32 Soft tissue elasticity differs depending on 
the amount of soft tissue and individual bone. In the ISOD 
model, such variables remain the same and can be con-
trolled.40 Thus, the analytical results help to make accurate 
predictions about implants and surrounding bone tissue.

In the present study, the resin was hardened in a silicone 
mold, as was done in other studies.27,34 The implants used 
were placed in acrylic models and then photoelastic resin 
models were prepared. This method aimed to prevent the 
stresses that might occur during the preparation of the nest 
in the photoelastic models. In many previous stud-
ies27-29,32-35,38,39,41 the mucosa around the implants located 
in the anterior region was eliminated, and artificial mucosa 
material was placed only in the posterior region under the 
prosthesis. This study was designed to provide conditions 
closer to the oral environment by using artificial mucosa to 
mimic material around the anterior implants.

Tanino et al.42 investigated the load transfer of stress-
relieving materials placed on two implants independently 

Figure 7.  (A) Stress patterns of locator attachment 1–1 mm loading from right side. (B) Stress patterns of locator attachment 
1–2 mm loading from right side. (C) Stress patterns of locator attachment 1–4 mm loading from right side. (D) Stress patterns of 
locator attachment 1–2 mm loading from left side. (E) Stress patterns of locator attachment 1–4 mm loading from left side.
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of each other using the FEA method. Again, Meijer et al.43 
studied loading conditions on overdenture prostheses with 
two independent implants using the FEA method. In both 
studies it was noted that the largest stress values were seen 
around the implant on the loading side. Similarly, research-
ers44 have examined the effects of different attachment 
systems on the stress transmission of ISOD prostheses. In 
the distal region where force was applied, moderate stress 
development was observed, and very low stress occurred 
on the opposite side of where the force was applied. In this 
study, similar to the results of previous studies, the most 
intense stresses in unilateral loads were concentrated on 
the loaded side implant.

Both ball and locator systems used in the current study 
transmitted moderate stress to the implant–bone interface 
in all experimental models. This result is consistent with 
the study of da Silva et al.,45 who examined the stresses 
that different retention types transmitted to alveolar bone 
and implants. The O-ring attachment system transmits 
stress to the implants at moderate levels. Machado et al.34 
investigated the effects of the three different stud attach-
ment systems on the stresses transmitted to the implants in 
implant-supported mandibular overdentures. Low levels 
of stress were found around the implants in the O-ring sys-
tem. Fanuscu and Caputo44 reported that, in the two differ-
ent attachment systems examined, the force was transmitted 
to the implants in the maxilla overdentures, indicating that 
the ball attachment system caused stress transmission on 
the loading side at a high level. The results of our study are 
in disagreement with these two studies. Differences in the 
magnitude of the stresses in available literature investiga-
tions are thought to be dependent on the magnitude of 
force applied on models and the differences in the force 
application areas. It has been reported that the shift of the 
load site from anterior to posterior causes an increase in 
the stress of the toothless area and a decrease in stress in 
the implants.45,46

Ochiai et al.33 reported that in a PESA study, low stress 
was observed in the loading side implant in the locator 
attachment system, while stress was distributed in the 
opposite side implants. Çelik and Uludağ27 observed a 
higher stress level in the locator system than the ball sys-
tem as a medium stress level. They again reported that the 
locator system distributed the stress in the opposite implant 
while the ball attachment system could not create it. The 
results obtained from this study support the results of stud-
ies by Ochiai et al.33 and Çelik and Uludağ.27 In all locator 
experiment models, the load was distributed on both 
implants, but more intense stress occurred in the loading-
side implant. In ball attachment test models, lower stress 
intensity was observed in the 1 mm–2 mm and 1 mm–4 
mm models on the opposite side of loading, regardless of 
loading site.

Hojo et  al.47 examined locator and extracoronal resil-
ient attachment (ERA) attachment systems. They found 

that the ERA system showed minimal differences in stress 
transmission between implants under unilateral loadings. 
The results from our study were similar to theirs, as we 
found that the ball attachment system functions closely to 
that of the ERA; it did not transmit stress opposite the 
implants under unilateral loadings. In models with differ-
ent mucosa thicknesses, the locator design was more stable 
and caused less stress on both the implants and the alveolar 
crest than did the ball attachment under unilateral load-
ings. For this reason, there was no gap between the male 
and female parts of the prosthesis provided with the ball 
attachment and the design of the retaining system. Applied 
force is therefore transmitted directly to the implants. 
When a resilient-type attachment such as a locator is used, 
under occlusal loads, the stress-reducing effect of the gap 
between the male and female parts reduces the forces 
directly transmitted to the implants.19 Furthermore, mucosa 
support is more abundant in the locator holders, and some 
of the force can be transmitted through the mucosa to the 
alveolar crest at the loading point.

The highest stress concentration observed in the 
implants was due to the resilience difference between the 
implants (20–30 μm) and the mucosa (approximately 500 
μm).48,49 Therefore, it increases stress values on more 
resilient mucosal implants.1,48

Recently, a study18 compared ball and locator attachment 
systems using the FEA method in models with different 
bone heights independently around two implants that were 
supporting overdenture prostheses. The authors found lower 
stress values in the locator models than in the ball models. 
This result was consistent with those of our study. The 
authors suggested that this may be attributed to the dual 
retention mechanism (through both external and internal 
mating surfaces) of the locator attachment that provides ver-
tical resiliency. The inside and outside mating areas provide 
more retention surfaces and thereby increase resiliency.50,51

In addition, it was explained that the ability of the den-
ture cap to gently pivot in any direction over the male 
accommodates natural movements during occlusion and 
the pliancy of the soft tissue supporting the overdenture, 
possibly also providing additional resiliency.52 
Furthermore, when the bone height difference was 1 mm 
in the models (1 mm–2 mm), while observing the increase 
in stress, they found the lowest stress values in the models 
with 3 mm bone height (1 mm–4 mm) differences. Again, 
these results are partially compatible with our study. The 
authors believe this small difference is related to stimula-
tion of the soft tissue which provided a more realistic 
approach in the current study. In the 1 mm–4 mm models, 
the stress value was lower than in the 1 mm–2 mm models 
(as with the previous study) but it was not the lowest of all 
the values, as in the previous study. This difference is 
thought to be due to the use of different analysis methods 
among the studies because of the lack of response of the 
biological system of finite element modeling.
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For ISOD prostheses, the load under chewing forces is 
shared between the implants and mucosa that supports the 
prosthetic base. The amount of this sharing depends on the 
type of attachment and the thickness of mucosa.53 When an 
occlusal force is applied to the implants vertically from a 
posterior point, a force component is formed in the ante-
rior region, which causes the prosthesis to tend to be 
embedded toward tissue by rotating the axis passing 
through the implants.54 Due to the anatomy of the alveolar 
crest, there is a tendency for the complete mandible den-
ture to be pushed anteriorly under chewing forces.53

It is unknown what proportion will be propelled by 
increasing the load and deformation of the resilient tissue 
that supports the prosthesis. As force is applied to the 
model, both deformations in the resilient material and 
stress values in the implants increase. This increase takes 
place gradually in relation to the characteristics of the 
resilient material.53 When force is applied to the resilient 
material, the substance takes on a portion of the force, and 
changes shape by absorbing the energy.

The mechanical properties of an implant play an impor-
tant role as they affect tissue healing and remodeling, and 
the importance of designing devices that mimic the 
replaced tissue is well evident.55 The mechanical behavior 
clearly varies with the type of tissue, and anisotropy repre-
sents an important characteristic common to most biologi-
cal tissues. Another important feature of most natural soft 
tissues, such as tendons, ligaments, and intervertebral 
discs, evidences a non-Hookean behavior; hence, their 
stress–strain curve is nonlinear, displaying a J-shaped 
region (compressive stress–strain curve).56,57

Biological materials are dynamic, complex, and multi-
functional, characteristics which are difficult to achieve in 
purely synthetic systems. It was previously believed that 
artificial biomaterials had to be designed to provide a high 
strength associated with a high modulus of elasticity at low 
strain levels. However, in contrast to most artificial materi-
als, soft tissues are characterized by a large amount of 
strain before failure, and they are flexible and tough, show-
ing a high strength.58,59

Soft tissues exhibit viscoelastic behaviors such as 
stress-relaxation and creep, which show the ability of the 
natural structures to attenuate the stress concentration 
when they are strained, and to limit rapid deformations 
when they are subjected to high stresses.58

Initially, when the deformation starts to increase with 
the application of force, the force applied at the same 
amount as the deformation reaches a certain level and does 
not produce the same amount of deformation as previously 
measured. After the substance is completely compressed, 
it starts acting as a solid substance and transmitts the force 
according to solid body principles. For this reason, it is 
expected that the graph showing the deformation caused 
by the application of the modeling force covered with a 

resilient material will show a parabolic curve. When the 
compression of the resilient material is completed, the 
force applied and associated deformation that occurs are 
directly proportional to each other.60,61 This information is 
thought to hold for mucosal material such as soft tissue in 
1 mm–1 mm mucosa thickness and 1 mm–4 mm mucosa 
thickness models, whereas 1 mm–2 mm mucosa thickness 
models behave as soft tissue under force. The lower stress 
concentration in 1 mm–4 mm models can be attributed to 
their ability to behave as solid materials by compressing 
after a certain thickness of the soft tissues as described 
above, while higher stress is observed in 1 mm–2 mm 
models for both holder types than in other models.

Ichikawa et al.48 argued that the difference between the 
soft tissue and the displacement angle of the implants may 
cause concentration of stress around the implant. Assunçao 
et  al.1 investigated the effects of ISOD prostheses with 
three different mucosa thicknesses (1 mm, 3 mm, 5 mm) 
and mucosa-assisted full dentures in stress transmission. 
The authors reported that the overdenture group showed 
higher stress values than did the full prosthesis group. 
When mucosal resilience and thickness increased in ISOD 
prostheses, these were found to increase maximal stress 
values. This stress increase was related to the increase in 
the load on the implants due to the decrease in prosthetic 
activity.

Our study offers results that are partially compatible 
with those of Assunçao et al.,1 who found an increase in 
stress when the mucosal thickness increased from 1 mm to 
2 mm in both types of attachments, while stress values 
were decreasing in the models which had 4 mm mucosa 
thickness, as opposed to the previous study. This differ-
ence may be because the mucosa heights of the previous 
studies were symmetrical in both regions of the mandible, 
as in the present study, except that in the 1 mm–1 mm 
models, the mucosa thicknesses in the left and right side of 
the mandibula were different. Most likely in models with 1 
mm–2 mm (which are thought to be a more efficient use of 
the soft mucosa characteristics), mucosa material under 
occlusal loads pushes the prosthesis anteriorly so that 
greater stress values are seen on the implants.53,60

Displacement of the oral mucosa supporting the pros-
thetic quadrant is greater than the resilience of materials 
used in in vitro studies. For this reason, the force transmit-
ted to the implants is greater when sharing forces between 
implants and soft tissue in the mouth. Shigeto et  al.61 
reported that prosthetic reinforcement is achieved by the 
residual ridge and the mucobuccal fold, and that load shar-
ing occurs at different ratios at different crest heights.

In our study, the stress intensity was greater on the 
mesial and distal sides of the implants. This is similar to 
the results of Meijer et al.,62 who found that stress was con-
centrated on the mesial and distal sides of implants in 
overdentures supported by nonsplinted implants using the 
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2D FEA method. This may be because the mandible chew-
ing forces in a denture made on independent supports force 
the implants to approach each other. Thus, stresses are 
transmitted equally to mesial and distal implants.63

Since the magnitude of the forces that may result in 
destruction of implants or surrounding hard tissues is not 
known, it is useful to try to reduce the forces as much as 
possible40 so that rehabilitation is long-lasting. The load-
ing direction and size in in vivo conditions are very differ-
ent from those of in vitro conditions. It is useful to plan in 
vivo studies to examine the effects of imitative variables in 
laboratory conditions.

Conclusions

Within the limitations of this study the following conclu-
sions were drawn:

1.	 Regardless of mucosal thickness and attachment 
type, the implant on the loading side was subjected 
to the highest stress concentration.

2.	 In both types of attachments, the same average 
stress concentration was observed on and around 
the implants in the models of those implants hav-
ing the same vertical height. In different height 
mucosa thicknesses (1 mm–2 mm, 1 mm–4 mm), 
locator attachment models distributed the load to 
the other side of the implant and its surrounding 
tissue, whereas the ball attachment did not.

3.	 The highest observed stress level was moderate for 
both attachment systems.

4.	 According to the results of this study, implants 
should be placed at equal bone heights and care 
should be taken to create equal mucosa thick-
nesses. If overdenture prostheses must be made on 
implants with different bone heights and different 
mucosa thicknesses after surgery, the choice of a 
locator attachment type (instead of a ball attach-
ment) and selection of bilateral balancing occlu-
sion (instead of unilateral balancing occlusion) will 
be positively affected by the prognosis of implants 
in relatively balancing the stresses transmitted to 
the implants.
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