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Abstract
Chronic hepatitis due to any cause leads to cirrhosis 
and end-stage liver disease. A growing body of litera-
ture has also shown that fatty liver due to overweight 
or obesity is a leading cause of cirrhosis. �ue to the 
obesity epidemic, fatty liver is now a significant prob-
lem in clinical practice. Steatosis has an impact on the 
acceleration of liver damage in patients with chronic 
hepatitis due to other causes. An association between 
hepatitis C virus (HCV) infection, steatosis and the on-
set of insulin resistance has been reported. Insulin re-
sistance is one of the leading factors for severe fibrosis 
in chronic HCV infections. Moreover, hyperinsulinemia 
has a deleterious effect on the management of chronic 
HCV. Response to therapy is increased by decreasing 
insulin resistance by weight loss or the use of thiazoli-
denediones or metformin. The underlying mechanisms 
of this complex interaction are not fully understood. 
A direct cytopathic effect of HCV has been suggested. 
The genomic structure of HCV (suggesting that some 
viral sequences are involved in the intracellular accu-
mulation of triglycerides), lipid metabolism, the mo-
lecular links between the HCV core protein and lipid 
droplets (the core protein of HCV and its transcriptional 

regulatory function which induce a triglyceride accu-
mulation in hepatocytes) and increased neolipogenesis 
and inhibited fatty acid degradation in mitochondria 
have been investigated. 
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INTRODUCTION
Chronic hepatitis due to any cause leads to cirrhosis 
and end-stage liver disease. A growing body of  litera-
ture has also shown that fatty liver due to overweight 
or obesity is a leading cause of  cirrhosis[1-3]. Due to the 
obesity epidemic, fatty liver is now a significant problem 
in clinical practice. An association between hepatitis C 
virus (HCV) infection, steatosis and the onset of  insulin 
resistance has been reported[4-6]. Moreover, steatosis has 
an impact on the acceleration of  liver damage in patients 
with chronic hepatitis due to other causes. The underly-
ing mechanisms of  this complex interaction are not fully 
understood. A direct cytopathic effect of  HCV has been 
suggested. The genomic structure of  HCV (suggesting 
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that some viral sequences are involved in the intracellular 
accumulation of  triglycerides), lipid metabolism, and the 
molecular links between the HCV core protein and lipid 
droplets (the core protein of  HCV and its transcriptional 
regulatory function which induce a triglyceride accumu-
lation in hepatocytes) and increased neolipogenesis and 
inhibited fatty acid degradation in mitochondria have 
been investigated (Figure 1).ure 1).1).

BACKGROUND OF FATTY LIVER
Excessive accumulation of  triglycerides in hepatocytes 
in the absence of  significant alcohol consumption, de-
fined as > 5% fat by weight, occurs in about 20%-30% 
of  adults[1-3]. Excessive fat in the liver predisposes to the 
development of  steatohepatitis which is a significant risk 
factor for developing cirrhosis and its complications, in-
cluding hepatocellular carcinoma.

Background of insulin resistance in patients with HCV
The frequency of  type 2 diabetes is more common in 
patients with chronic HCV infection than in hepatitis B 
infection (21% vs 12%, respectively) which is evidence 
of  a link between HCV infection and diabetes mellitus 
(DM)[4-6]. This relationship is independent of  the exis-
tence of  cirrhosis. A large cross-sectional United States 
study which included over 9000 individuals showed that 
the frequency of  type 2 DM is 3-fold more common 
in hepatitis C patients. Both older age and higher body 
mass index (BMI) are more common among patients 
with both hepatitis C and type 2 diabetes.

Insulin resistance (IR) is a specific feature of  chronic 
HCV, associated with genotypes 1 and 4 and high serum 
HCV RNA level[7]. Chronically HCV infected sub�ectsChronically HCV infected sub�ects 
present a 3-fold increased risk of  IR and glucose meta-
bolism impairment, with IR occurring in the very early 
stages of  hepatic lesions (fibrosis stage 0 or 1), with a 
worsening tendency as hepatic fibrosis progresses[8-10]. 
There is also an association between IR severity and 
DM, with higher viral load and an improvement in IR 
after a sustained viral response. response.

A recently published study which investigated 600 
patients [chronic hepatitis C (CHC) in 500 and chronic 
hepatitis B (CHB) in 100] reported that IR was present 
in 32.4% of  the 462 nondiabetic CHC patients and was 
associated with the metabolic syndrome, genotypes 1 
and 4, significant fibrosis, and severe steatosis[7]. IR was 
diagnosed in 15% of  145 CHC patients without meta-
bolic syndrome or significant fibrosis, and was associated 
with genotypes 1 and 4, high serum HCV RNA level, 
and moderate-to-severe necroinflammation. IR was less 
frequent in CHB patients than in matched CHC patients 
(5% vs 35%, respectively, P < 0.001).

In our clinic, we investigated 76 patients. Of  these 
76, 12 had hepatitis B, 19 had hepatitis C, 34 had simple 
steatosis and 11 were control sub�ects. We found that IR 
was only significant and associated with severe fibrosis in 
patients with HCV[11].

Whether fat in the liver is an important determinant 
of  IR is debatable. The study showed that insulin secre-
tion assessed by intravenous glucose in�ection was not 
impaired in CHC patients compared to the controls[12]. 
When they studied the IR of  29 people with hepatitis C 
(14 with genotype 1 and 15 with genotype 3) and con-
firmed they had high IR, nearly all the IR was found to 
be in the muscle and hardly any in the liver. Of  the 29 
patients, 15 had very high levels of  fat in the liver and 
had the same degree of  IR as the 14 patients who did 
not have fatty livers.

IR is one of  the leading factors for severe fibrosis 
in CHC infections independent of  steatosis, as com-
pensatory hyperinsulinemia is fibrogenic[12]. Moreover, 
a relationship between exogenous hyperinsulinemia and 
hepatocellular carcinoma has been reported. Hyperinsu-
linemia decreases therapy response and has a deleterious 
effect on the management of  chronic HCV infection. 
Response to therapy is increased by decreasing insulin 
resistance by weight loss or the use of  thiazolidene-
diones and metformin. Metformin improved virologic 
response when added to hepatitis C interferon-ribavirin 
therapy in those with IR[13].

A relationship between type 1 diabetes and hepatitis C, 
and type 2 diabetes and hepatitis B has not so far been 
reported[14].

Background of steatosis in patients with HCV infection
The prevalence of  steatosis is 20%-30% in the general 
population and is 50%-80% in patients with HCV infec-
tion. HCV itself has the ability to directly promote stea-HCV itself  has the ability to directly promote stea-
tosis and IR[15-18]. If all steatogenic co-factors are exclu- If all steatogenic co-factors are exclu-If  all steatogenic co-factors are exclu-
ded, the prevalence of  steatosis remains at 50% resulting 
in a 2.5-fold increased prevalence as compared with the 
general population and other forms of  chronic liver di-
sease. The prevalence of  steatosis is 18% in hepatitis Bhepatitis B 
virus infectioninfection[19].

There are 2 types of  liver steatosis: metabolic steato-
sis which is related to high BMI in patients with geno-
type 1, and viral steatosis which is related to hepatitis 
C genotype 3. Steatosis is more frequent in associationSteatosis is more frequent in association 
with genotype 3a as compared to other genotypes such 
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Figure 1  Underlying mechanisms of the complex interaction resulting in 
steatosis in patients with hepatitis C virus. HCV: Hepatitis C virus.



as genotype 1, 2 and 4 (74% vs 50%), which suggests that 
some sequences of  the viral genome may be involved in 
intracellular lipid accumulation[16]. Additionally, steatosis 
correlates with viral load and can revert after effective 
treatment and reoccurs with re-infection in genotype 3 
infection.

The localization of  steatosis, particularly in genotype 
3 infected patients, is predominantly in the periportal 
zone (acinar 1) and not in the centrilobular zone (acinar 3) 
and is more typical of  metabolic associated steatohepati-
tis[20-23]. All genotypes are steatogenic, however, genotype All genotypes are steatogenic, however, genotypeAll genotypes are steatogenic, however, genotype 
3 is three times more potent. Transgenic mouse models 
showed that the core protein can induce the appearance 
of  lipid droplets. One possible molecular explanation for 
the greater steatogenic property of  genotype 3, could be 
a phenylalanine residue at position 164 in core protein 
domain Ⅱ, instead of  tyrosine as in other genotypes, 
which results in a higher affinity to lipids.

Hyperinsulinism, IR related, directly activates stellate 
cells and, in association with hyperglycemia, increases 
connective tissue growth factor, a key cytokine in hepatic 
fibrogenesis[24,25]. Steatosis also relates to more advanced 
fibrosis and to accelerated fibrosis progression. Thus, 
treating HCV infected patients with evidence of  hepatic 
steatosis, even if  they only present mild inflammatory 
activity, has been suggested. How? Steatosis may sensi-
tize the liver to inflammation and apoptosis, and sub-
sequently enhance fibrosis. A recent study showed that 
hepatic steatosis is associated with higher programmed 
cell death by apoptosis with stellate cell activation[26].

Background of insulin resistance
A balance exists between energy demand and intake in 
the human body. Obesity and its consequences such as 
IR and the metabolic syndrome, is a growing threat to 
the health of  people in developed nations. While insulin 
receptor defects cause severe IR, most patients with IR 
have impaired post-receptor intracellular insulin signal-
ing[27].

INSULIN SIGNALING PATHWAY AND GLU-
COSE HOMEOSTASIS
There is cross-talk among insulin sensitive tissues such 
as skeletal muscle, adipose tissue, and liver (Figure 2). 
Insulin binds α-subunits of  its receptor which is a cell 
surface receptor on insulin sensitive cells such as skeletal 

muscle, adipocytes, and hepatocytes leading to auto-
phosphorylation of  the cytoplasmic domains (β-subunits) 
of  the receptor[25-40]. The insulin receptor has intrinsic 
tyrosine kinase activity activated by insulin binding and 
the autophosphorylated receptor activates its substrates 
that include insulin receptor substrate (IRS)-1, IRS-2, 
Src homology collagen (Shc), and an adaptor protein 
with a pleckstrin homology (PH) and Src homology 
(SH) 2 domain by tyrosine phosphorylation (Figure 3). 
These phosphorylated docking proteins bind and ac-
tivate several downstream components of  the insulin 
signaling pathways. Activated IRS-1 associates with 
phosphatidyl inositol 3-kinase (PI3-K), which then ac-
tivates Akt. Akt substrate of  160 kDa (AS160), a serine/
threonine kinase, was identified in 3T3-L1 adipocytes. 
In both skeletal muscle and adipose tissue, these insulin-
mediated phosphorylation-dephosphorylation signaling 
cascades induce the translocation of  glucose transport-
ers (GLUT), predominantly GLUT4-containing vesicles, 
from intracellular storage sites to the plasma membrane, 
increasing glucose uptake to prevent abnormal glucose 
and insulin elevations in the plasma (insulin-stimulated 
glucose transport). These events and insulin-dependent 
inhibition of  hepatic glucose output maintain glucose 
homeostasis. Insulin also affects glucose homeostasis 
indirectly by its regulatory effect on lipid metabolism. 
Any interference in this insulin signaling pathway causes 
glucotoxicity, insulin resistance and, when islet β cells are 
capable of  responding, compensatory hyperinsulinemia. 
Hepatitis C virus Genotype 1b diminishes IRS-1 levelsGenotype 1b diminishes IRS-1 levels 
and causes IR.

Hepatic expression of  insulin receptor protein was 
decreased in chronic hyperinsulinemic states. IRS-1 was 
more closely linked to glucose homeostasis with the 
regulation of  glucokinase expression, while IRS-2 was 
more closely linked to lipogenesis with the regulation 
of  lipogenic enzymes sterol regulatory element-binding 
protein-1c (SREBP-1c) and fatty acid synthase. More-
over, insulin activates synthesis and inhibits catabolism 
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of  lipids, while shutting off  the synthesis of  glucose in 
the liver.

Adipose tissue is one of  the ma�or insulin sensitive 
organs in the human body and the process of  differ-
entiation of  preadipocytes to adipocytes, induced by 
insulin, is called adipogenesis. Within the adipose tissue, 
insulin stimulates triglyceride synthesis (lipogenesis) and 
inhibits lipolysis by upregulating lipoprotein lipase activ-
ity which is the most sensitive pathway in insulin action, 
facilitating free fatty acid uptake and glucose transport, 
inhibiting hormone sensitive lipase, and increasing gene 
expression of  lipogenic enzymes. Insulin also induces 
the degradation of  apolipoprotein B100 (apo B100), a 
key component of  very-low-density lipoprotein, in the 
liver[41].

Insulin resistance
Insulin resistance can be defined as the failure of  insu-
lin sensitive cells to respond to insulin normally. It is 
characterized by elevated plasma glucose and, before 
attrition of  pancreatic β-cells develops, elevated insulin 
levels. Chronic hyperinsulinemia is a ma�or contributor 
to glucose and lipid metabolism abnormalities. Insulin 
resistance also inappropriately activates peripheral li-
polysis and stimulates free fatty acid mobilization from 
adipocytes in the fed state. Increased circulating free 
fatty acids contribute to fat accumulation in the liver 
and muscle, further causing these tissues to be insulin 
resistant by disturbing their downstream insulin signaling 
cascades.

Mechanisms of insulin resistance (role of tumor necrosis 
factor-α and plasma free fatty acids)
The most common mechanism of  IR is disturbed post-
receptor insulin signaling (Figure 4)[42-48]. Whereas most 

insulin signaling is propagated by tyrosine phosphoryla-
tion, serine (Ser) phosphorylation is often inhibitory. Ser 
phosphorylation of  IRS-1 decreases both insulin stimu-
lated tyrosine phosphorylation of  IRS-1 (phosphorylated 
Ser residues of  IRS-1 become poor substrates for insulin 
receptor) and PI3-K activation. This diminishes the 
downstream insulin signaling and insulin sensitivity of  
insulin target tissues. IRS-1 has several Ser residues in-
cluding Ser 307, Ser 612 and Ser 632 which can be phos-
phorylated. Insulin and tumor necrosis factor-tumor necrosis factor-α (TNF-α) 
can phosphorylate the same Ser residues of  IRS-1. IR 
occurs very early in HCV infection, in parallel with an 
elevation in TNF-α levels. HCV also directly promotes 
IR through the proteasomal degradation of  IRS-1.

TNF-α and plasma free fatty acids have been shown 
to be major stimuli of  Ser 307 phosphorylation of  
IRS-1. Inhibition of  IRS-1 due to the phosphorylation 
of  its Ser 307 residues also requires the activation of  
both c-Jun N-terminal kinase (JNK) and inhibitor κB 
kinase (IKK) β. Both TNF-α and free fatty acids induce 
JNK and IKK-β activation.

TNF-α stimulates phosphorylation of  Ser residues 
of  both IRS-1 and IRS-2 in hepatocytes[48-50]. It was 
recently reported that monocyte-derived macrophages 
increasingly accumulated within the adipose tissue of  
obese patients. In addition to the dysregulated produc-
tion of  adipocytokines by adipocytes, adipose tissue 
macrophages also produce proinflammatory cytokines 
such as TNF-α, interleukin-6, and C-reactive protein. 
Both adipose tissue and its macrophages contribute to 
the TNF-α burden. Indeed, its circulating concentra-
tions are very low, commonly undetectable even in obese 
mice or humans.

Elevated free fatty acids in the circulation are also 
ma�or contributors to IR in both humans and mice by 
stimulating Ser 307 phosphorylation of  IRS-1. Adipose 
tissue triglycerides are the main source of  circulating free 
fatty acids in obesity. One mechanism of  elevated free 
fatty acid-induced IR in muscle is the impaired activation 
of  protein kinase C lamda (PKCλ) and protein kinase C 
XI (PKCξ)[50-52]. PKCθ can also activate IKK-β which 
phosphorylates Ser 307 residues of  IRS-1. Additionally, 
increased acyl CoAs or ceramide which is a derivative 
of  acyl CoAs, promote IR by diminishing Akt1 activa-
tion. Increased ceramide activates a phosphatase (protein 
phosphatase 2A) that reverses tyrosine phosphorylation 
of  Akt/protein kinase B (PKB). Inactivated PKB in-
hibits the insulin downstream signaling cascade leading 
to IR in muscles [Le]. Several oxidative stress mediators 
might also induce IR by affecting insulin downstream 
signaling. Phosphatases such as phosphatase and tensin 
homolog, small heterodimer partner 2, and protein ty-
rosine phosphatase 1B are now recognized to be ma�or 
mediators involved in IR. Another possible mechanism 
for IR is defective glucose transport such as down-regu-
lation of  GLUT4.

JNK is one of  the stress-related kinases and plays 
an important role in the development of  IR[48,52]. The 
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three members of  the JNK group of  serine/threonine 
kinases, namely JNK-1, -2, and -3 are activated by proin-
flammatory cytokines such as TNF-α as well as free fatty 
acids and endoplasmic reticulum stress due to metabolic 
overload, which is an intracellular abnormality found in 
obesity. Activated JNK induces Ser 307 phosphorylation 
of  IRS-1, disturbs insulin downstream signaling, and 
subsequently causes insulin resistance. JNK activity has 
been found to be elevated in liver, muscle, and adipose 
tissue of  experimental obese models. Additionally, the 
loss of  JNK-1 activity such as in JNK-1 knockout mice 
has been shown to prevent the development of  IR in 
leptin-deficient ob/ob mice or mice with high-fat induced 
dietary obesity.

PKCθ and IKK-β are two proinflammatory kinases 
involved in insulin downstream signaling. They are acti-
vated by lipid metabolites such as high plasma free fatty 
acid concentrations and there is a positive relationship 
between the activation of  PKCθ and the concentration 
of  intermediate fatty acid products. PKCθ activates both 
IKK-β and JNK, leading to increased Ser 307 phosphor-
ylation of  IRS-1 and IR. IKK-β is a mediator of  IR and 
one of  the other stress-related kinases[53,54]. Activation or 
overexpression of  IKK-β diminishes insulin signaling 
and causes IR, whereas inhibition of  IKK-β improves 
insulin sensitivity. IKK-β phosphorylates the inhibitor 
of  nuclear factor (NF) -κB leading to the activation of  
NF-κB by the translocation of  NF-κB to the nucleus. 
NF-κB is an inducible transcription factor and promotes 
specific gene expression in the nucleus. NF-κB has both 
apoptotic and anti-apoptotic effects. The finding that 
NF-κB deficient mice were protected from high-fat diet-
induced IR suggests that NF-κB directly participates in 
processes that impair insulin signaling.

Suppressors of  cytokine signaling (SOCS) and induc-
ible nitric oxide synthase (iNOS) are two inflammatory 
mediators recently recognized to play a role in insulin 
signaling[54-61]. Induction of  SOCS proteins [SOCS 1-7 
and cytokine-inducible src homology 2 domain-contain-

ing protein (CIS)] by proinflammatory cytokines might 
contribute to the cytokine-mediated IR in obese sub�ects. 
SOCS-3 might also regulate central leptin action and play 
a role in the leptin resistance of  obese human sub�ects. 
SOCS-1 knockout mice showed low glucose concentra-
tions and increased insulin sensitivity. In animal studies, 
inactivation of  SOCS-3 or SOCS-1 or both in the livers 
of  db/db mice partially improved insulin sensitivity and 
decreased hyperinsulinemia, whereas overexpression 
of  SOCS-1 and SOCS-3 in obese animals caused IR 
and also increased activation of  SREBP-1c[62]. SREBP-
1c is one of  the key mediators of  lipid synthesis from 
glucose and other precursors (de novo lipogenesis) in the 
liver. Indeed, SOCS proteins markedly induce de novo 
fatty acid synthesis in the liver by both the up-regulation 
of  SREBP-1c and persistent IR with hyperinsulinemia 
which stimulates SREBP-1c-mediated gene expression.

The molecular mechanism that leads to IRS-1 deg-
radation varies according to genotype in patients with 
heptitis C virus infection. Genotype 1 promotes the 
expression of  SOCS-3 as genotype 3 promotes SOCS 7 
expression, with a mechanism of  IRS-1 degradation si-
milar to that induced by SOCS 3; it also inhibits PPAR-γ, 
further worsening IR. One of  the steatogenic mecha-
nisms is the promotion of  de novo fatty acids synthesis by 
ınduced expression of  SREBP-1c by HCV infection.

Nitric oxide synthase-2 (NOS2) or iNOS production 
are also induced by proinflammatory cytokines[63,64]. High-
fat diet in rats causes up-regulation of  iNOS mRNA 
expression and increases iNOS protein activity. Increased 
production of  NOS2 might reduce insulin action in both 
muscle and pancreas and decreased iNOS activity pro-
tects muscles from high-fat diet-induced IR.

HCV induces protein phosphatase 2A expression, 
through an endoplasmic reticulum stress response pat-
hway, which dephosphorylates protein kinase B (PkB)/
Akt (a main enzyme in the insulin signaling pathway), 
and thereby lowers its kinase activity[65].

THE PATHOGENESIS OF HEPATOCELLULAR 
INJURY IN STEATOSIS
The accumulation of  fat within the hepatocytes sensitizes 
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the liver to in�ury from a variety of  causes and the regen-
erative capacity of  a fatty liver is impaired (Figures 5 and 
6)[66-68]. An interacting network of  cytokines and adipokines 
that regulate inflammation is disrupted. p53 is involved inp53 is involved in involved ininvolved in 
the mechanisms of  hepatocellular in�ury accompanied by byby 
steatosis[69].

CONCLUSION
Steatosis is one of  the characteristic histopathologic fea-
tures of  HCV caused by chronic liver disease, and is 
also closely related to IR. Insulin resistance is one of  
the leading factors for severe fibrosis in chronic HCV 
infections. Moreover, hyperinsulinemia has a deleterious 
effect on the management of  chronic HCV. The under-
lying mechanisms of  this complex interaction are not 
fully understood. A direct cytopathic effect of  HCV has 
been suggested. The genomic structure of  HCV, lipid 
metabolism, the molecular links between the HCV core 
protein and lipid droplets and increased neolipogenesis 
and inhibited fatty acid degradation in mitochondria 
have been investigated.
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