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Abstract

Background: Cisplatin, one of the most effective and potent anticancer drugs, is used in the treatment of a wide
variety of both pediatric and adult malignancies. However, the chemotherapeutic use of cisplatin is limited by its
serious side-effects such as nephrotoxicity and ototoxicity. Cisplatin chemotherapy induces a reduction in the
antioxidant status, leading to a failure of the antioxidant defense against free-radical damage generated by
antitumor drugs. Cisplatin-induced oxidative stress in the kidney was partially prevented by antioxidant treatments
using superoxide dismutase, glutathione, selenium and flavonoids. Melatonin and its metabolites possess
free-radical scavenging activity and it has been shown that they protect against cisplatin toxicity. However, the
mechanism of the protective effects of melatonin against cisplatin-induced nephrotoxicity is still essentially
unknown. We therefore designed this study to investigate the underlying mechanism of the protective effect of
melatonin against cisplatin-induced renal damage in a rat nephrotoxicity model in vivo.

Methods: Twenty eight 8-week-old male Wistar rats were divided into four groups of control, melatonin treatment
(4 mg/kg b.w i.p. for 10 days), cisplatin treatment (7 mg/kg b.w., i.p.) and melatonin and cisplatin combination
treatment. Serum urea nitrogen (urea-N) and creatinine levels were measured. Histopathological changes were
evaluated. In addition, we analyzed the expression levels of HO-1, Nrf2, NF-κB and AP-1 in Western blot analysis.

Results: Both serum creatinine and urea nitrogen increased significantly following cisplatin administration alone;
these values decreased significantly with melatonin co-treatment of cisplatin-treated rats. Histological analysis
showed that cisplatin caused damage in the proximal tubular cells in the kidneys of cisplatin-treated rats; these
changes were reversed by melatonin co-treatment. Upon Western blot analysis, melatonin treatment increased Nrf2
accumulation in the nuclear fraction, and increased the expression of HO-1 in the cytosolic fraction as compared to
the cisplatin-treated rats. Expressions of NF-κB p65 and AP-1 were increased significantly in the kidneys of rats
treated with cisplatin compared with the expression in the kidneys from the control, melatonin-only-treated and
melatonin co-treated rats.

Conclusion: Our present data suggest that melatonin attenuates cisplatin-induced nephrotoxicity possibly by
modulating Nrf2/HO-1 signaling.
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Background
Cisplatin (cis-diamminedichloroplatinum) is a widely used
antineoplastic drug for the treatment of various cancer
types [1,2]. However, its use is limited by its nephrotoxicity
with about 25–35% of patients experiencing a significant
decline in renal function after a single dose of cisplatin
treatment [3]. Recent studies showed that cisplatin induce
DNA adduct formation, leading to aberrant genetic tran-
scription and DNA duplication, cell cycle arrest, and in-
duction of apoptosis [4]. Further, increased generation of
reactive oxygen species (ROS), which are often involved in
renal dysfunction, has been reported in cisplatin-induced
nephrotoxicity [5-8]. The mechanism of cisplatin-induced
nephrotoxicity is not completely understood; however,
several mechanisms, including hypoxia, free radicals, in-
flammation, and apoptosis are thought to be involved.
Excessive production of free radicals, such as superoxide
anion, hydrogen peroxide, and hydroxyl radicals, and the
occurrence of lipid peroxidation due to oxidative stress are
associated with cisplatin-induced renal dysfunction [9,10].
In many cell types, numerous cellular responses to

oxidative stress have been found to be involved in signal-
ing proteins that act through the antioxidant response
element (ARE) and the transcription factor, the nuclear
factor erythroid 2-related factor 2 (Nrf2) [11]. Nrf2, is a
redox-sensitive transcription factor, which mainly regu-
lates transcriptional activation through the ARE [12,13].
Under physiological conditions, cytosolic Nrf2 is inactive
by its negative regulator Kelch-like ECH-associating pro-
tein 1 (Keap1). When cells are exposed to redox modu-
lators, Nrf2 is released from Keap1, translocates and
accumulates in the nucleus. Nrf2 forms a heterodimer
with a small Maf protein and c-jun [14]. It has been re-
cently documented that as Nrf2 activators various com-
pounds such as polyphenols (curcumin and resveratrol),
sulfur-containing compounds (isothiocyanate sulfora-
phane, phenethyl isothiocyanate), terpenoids (cafestol
and kahweol), carotenoids (β-carotene), and selenium in-
duce the expression of cytoprotective protein in an
ARE-dependent manner [15].
Redox sensitive molecular targets including transcrip-

tion factors nuclear factor-κB (NF-κB) and activator pro-
tein 1 (AP-1) contain highly conserved cysteine residues
and their oxidation, and nitration are essential in the oxi-
dant/redox signaling. Both NF-κB and AP-1 are activated
by various physiological and pathological stimuli including
ROS directly or their generation through mitochondria
[16] and orchestrate expression of many genes playing
roles in inflammation, embryonic development, lymphoid
differentiation, oncogenesis, and apoptosis [17].
Melatonin (N-acetyl-5-methoxytriptamine) is synthe-

sized and released into the circulation and especially into
cerebrospinal fluid by the pineal gland in a circadian
rhythm [18] and is also produced by immune system
cells, brain, airway epithelium, bone marrow, gut, ovary,
testes, skin and likely other tissues [19]. Melatonin and
its metabolites possess free-radical scavenging activity
[20,21]. Melatonin has both receptor-mediated and recep-
tor independent actions and is believed to affect all cells
[22,23]. Melatonin increases mRNA and protein levels of
antioxidant enzymes through Nrf2 activation [24,25]. Negi
et al. (2011) reported that melatonin ameliorates neuroin-
flammation and oxidative stress through Nrf2 and NF-κB
in experimental diabetic neuropathy. Upregulation of Nrf2
by melatonin resulted in an increased expression of anti-
oxidant enzyme heme oxygenase-1 (HO-1) [26].
Cisplatin-induced oxidative stress in kidneys was par-

tially prevented by antioxidant treatments using super-
oxide dismutase, glutathione, selenium and flavonoids
[27]. Melatonin has been shown to protect against cis-
platin toxicity [28,29]. However, the mechanism of the
protective effects of melatonin against cisplatin-induced
nephrotoxicity is still essentially unknown. We therefore
designed this study to investigate the mechanism of the
protective effect of melatonin against in vivo cisplatin-
induced renal damage in a rat nephrotoxicity model.
For this purpose, serum urea nitrogen (urea-N) and

creatinine levels were measured. Histological changes
were evaluated and the expression levels of HO-1, Nrf2,
NF-κB and AP-1 were analyzed in Western blot analysis.

Experimental methods
Animals
Male Wistar rats (n = 28, 8 wk-old), weighing 200–215 g,
were obtained from Firat University Research Center
(Elazig, Turkey). The rats were kept in an environmentally
controlled room at constant temperature (21 ± 1°C) and
humidity (75 ± 5%) under a 12 h light/dark cycle. The
animals were acclimatized for 1 week before the study and
had free access to standard laboratory feed and water ad
libitum. The study has the permission of Ethics Review
Committee for Ethics in Animal Experiments of the Firat
University and guidelines for the Care and Use of
Laboratory animals were strictly followed.

Experimental protocol
Kidney injury was induced by a single intraperitoneal (i.p.)
injection of cisplatin (Sigma Chemical Co, USA) (7 mg/kg
b.w.) [30]. Twenty-eight 8-week-old male Wistar rats were
divided into four groups of control treated with vehicle,
melatonin-treated (4 mg/kg b.w, i.p. at 17:00 hr. for
10 days) [31], (Sigma-Aldrich, St Louis, MO, USA), cis-
platin treated (7 mg/kg b.w., i.p.), and melatonin (4 mg/kg
b.w., i.p. at 17:00 hr. for 10 days) and cisplatin (7 mg/kg b.
w., i.p.) co-treated.
Melatonin administration was started two days before

the single i.p. injection of cisplatin. Melatonin was dis-
solved in ethanol and diluted in saline. Final ethanol



Table 1 The effect of melatonin administration on urea-N and creatinine levels in kidney of experimental rats (n=10)

Item Groups

Control Melatonin Cisplatine Melatonin + Cisplatine

Urea-N (mg/dl) 31.5 ± 3.4c 30.9 ± 2.0c 438.9 ± 63.1a 209.0 ± 42.5b

Creatinine (mg/dl) 0.68 ± 0.19c 0.67 ± 0.14c 3.61 ± 0.43a 1.91 ± 0.57b

Values are mean ± SE of 10 rats from each group. a, b, c: means in the same row not sharing a common superscript are significantly different (P< 0.05) between
groups.
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concentration was 1%. On day 12 (10 days after the cis-
platin treatment), all rats were sacrificed by cervical dis-
location under anesthesia (1% Halothane). Blood samples
were taken for serum analyses and the kidneys were
removed for histological studies and Western blot analysis.

Biochemical measurement
Blood samples were centrifuged at 3.000 g for 10 min, and
sera were collected. Serum urea nitrogen (urea-N) and
creatinine were measured using biochemical analyzer
(Olympus AU-660, Osaka, Japan).

Western blot analysis
Protein extraction was performed by homogenizing the rat
kidneys in 1 ml ice-cold hypotonic buffer A, containing
10 mM HEPES (pH 7.8), 10 mM KCl, 2 mM MgCl2, 1 mM
DTT, 0.1 mM EDTA, and 0.1 mM phenylmethylsulfonyl-
fluoride (PMSF). To the homogenates 80 μl of 10% Nonidet
P-40 (NP-40) solution was added, and the mixture was cen-
trifuged for 2 min at 14,000 g. Supernatant containing the
cytosolic fraction was collected for HO-1. The precipitate
containing the nuclear fraction was separated for Nrf2, NF-
ĸB-65 and AP-1, washed with 500 μl of buffer A plus 40 μl
of 10% NP-40, centrifuged, resuspended in 200 μl of buffer
C [50 mM HEPES (pH 7.8), 50 mM KCl, 300 mM NaCl,
0.1 mM EDTA, 1 mM DTT, 0.1 mM PMSF, 20% glycerol],
and centrifuged for 5 min at 14,800 g. The supernatant
from the abovementioned precipitate was collected for
Nrf2, NF-ĸB p65 and AP-1. Protein concentrations were
determined according to the procedure described by Lowry
using a protein assay kit supplied by Sigma (St. Louis, MO,
USA). Sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis sample buffer containing 2% b-mercaptoethanol
was added to the supernatant. Equal amounts of protein
(50 μg) were electrophoresed and subsequently transferred
to a nitrocellulose membrane (Schleicher and Schuell Inc.,
Keene, NH, USA). Blots on the nitrocellulose membrane
were washed twice for 5 min each in PBS and blocked with
1% bovine serum albumin in PBS for 1 h prior to the appli-
cation of the primary antibody. Antibodies against Nrf2,
HO-1, NF-κB p65 and AP-1 were purchased from Abcam
(Cambridge, UK). Primary antibody was diluted (1:1000) in
the same buffer containing 0.05% Tween-20. The nitrocel-
lulose membrane was incubated overnight at 4°C with pri-
mary antibody. The blots were washed and incubated with
horseradish peroxidase-conjugated goat anti-mouse IgG
(Abcam, Cambridge, UK). Specific binding was detected
using diaminobenzidine and H2O2 as substrates. Protein
loading was controlled using a monoclonal mouse antibody
against ß-actin (A5316; Sigma). Bands were analyzed den-
sitometrically using an image analysis system (Image J;
National Institute of Health, Bethesda, USA).

Histological analysis
The left kidney from each animal was immediately fixed in
20% neutral buffered formalin solution for histopathology.
Kidneys were gradually dehydrated, embedded in paraffin,
cut into 5-μm sections, and stained with hematoxylin and
eosin for histological examination according to standard
procedure [32]. Histological changes were evaluated semi-
quantitatively by a pathologist unaware of the type of treat-
ment. A minimum of 10 fields for each kidney slide was
examined and assigned for severity of changes using the
following scale: −, none; +, mild damage; ++, moderate
damage; and +++, severe damage.

Statistical analysis
Sample size was calculated based on a power of 85% and a
p-value of 0.05. Given that assumption, a sample size of
7 per treatment was calculated. The data were analyzed
using the GLM procedure of SAS (2002). The treatments
were compared using ANOVA and p < 0.05 was consid-
ered statistically significant. Inter-group differences in la-
tencies were determined by the analysis of variance for
repeated measurements (ANOVAR) followed by Fisher’s
post hoc test for all groups.

Results
Biochemical measurement
Both serum creatinine and urea nitrogen increased signifi-
cantly following cisplatin administration alone; these values
decreased significantly with melatonin co-treatment of
cisplatin-treated rats (Table 1).

Western blot analysis
Expressions of NF-κB p65 and AP-1 were increased
significantly in the kidneys of rats treated with cisplatin
compared with the expression in the kidneys from the
control, melatonin-only-treated and melatonin co-treated
rats (P < 0.05) (Figure 1). In Figure 1 it was shown that
melatonin treatment increased Nrf2 accumulation in the
nuclear fraction (P < 0.05), and increased the expression



Figure 1 Western blot analysis of NF-κB p65, AP-1, Nrf2
(nuclear fraction) and HO-1 (cytosolic fraction) in kidney
cells in rats: Western blot using the anti- NF-κB (Panel A), AP-1
(Panel B), Nrf2 (Panel C) and hemeoxygenese-1 (HO-1; Panel D)
revealed specific bands. Blots were repeated at least 3 times.
β-actin levels were monitored to ensure equal protein loading
(bottom panel). The intensity of the bands was quantified by the
densitometric analysis. Data are percent of the control. a-c:
Means in the same line without a common superscript differ
significantly (P < 0.05).
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of HO-1 in the cytosolic fraction as compared to the
cisplatin-treated rats (P < 0.05).

Histological analysis
The kidneys from the control rats and the rats treated
with melatonin only showed no abnormality, whereas the
kidneys from the cisplatin-treated rats showed marked
histological changes in the cortex and outer medulla, such
as vacuolation (v), interstitial edema (ie), tubular atrophy
(ta), severe tubular necrosis (tn), and interstitial inflamma-
tion (ii). Melatonin treatment decreased the cisplatin-
induced tubular necrosis and most of the changes were
caused by cisplatin treatment (Figure 2, Table 2).

Discussion
The present study demonstrates that the administration of
melatonin exerts a renal protective effect in a rat model of
nephrotoxicity provoked by a single injection of cisplatin.
We analyzed expressions of HO-1, Nrf2, NF-κB and AP-1
in Western blot analysis. The expressions of Nrf2 and
HO-1 were increased significantly. Expressions of NF-κB
p65 and AP-1 were increased significantly in the kidneys
of rats treated with cisplatin compared with the expression
in the kidneys from the control, melatonin-only-treated
and melatonin co-treated rats.
Both serum creatinine and urea nitrogen increased sig-

nificantly in cisplatin treated animals; however, these
effects of cisplatin reversed by melatonin treatment. Histo-
logical analysis showed that cisplatin damaged the prox-
imal tubular cells; these changes were prevented by
melatonin co-treatment. Melatonin alone did not show any
significant effect on NF-κB, AP-1, Nrf2 and HO-1 in the
kidneys of animals without cisplatin treatment. In previous
studies, it has been shown that cisplatin enhances the pro-
duction of ROS, decreases the antioxidant enzyme levels,
enhances the level of TNF-α [33], and induces apoptosis
[34] while triggering its toxicity. ROS generated by cisplatin
are crucial for Nrf2-driven transcriptional activation of
ARE. This led us to expect that cisplatin might induce nu-
clear translocation of Nrf2, and activate NF-κB; NF-κB ac-
tivation by ROS has been reported in a previous study [35].
Nrf2 is a basic leucine zipper transcription factor, which
transcriptionally regulates many genes including HO-1,



Figure 2 Histological changes in renal tissues in response to cisplatin and cisplatin+melatonin: The day when animals injected
cisplatin is Day 0 and the histological changes in the renal tissues on day 10 are indicated. A, Control; B, melatonin treatment alone;
C, cisplatin treatment alone [left to right (ii) interstitial inflammation, (v) vaculation, (ie) interstitial edema, (tn) tubular necrosis, (ta) tubular atrophy];
D, cisplatin+melatonin. Magnification: x 200.

Kilic et al. Nutrition & Metabolism 2013, 10:7 Page 5 of 8
http://www.nutritionandmetabolism.com/content/10/1/7
NAD(P) H:quinine oxidoreductase-1, c-glutamylcysteine
synthase, and glutathione S-transferase [36]. The inactive
form of Nrf2 is localized in the cytoplasm bound to a
cytoskeleton-associated protein, Keap1. Its activation is
considered to be an important molecular target of many
chemopreventive and cytoprotective agents [37-39]. Nrf2
protects the cell against oxidative stress through ARE-
mediated induction of several phase 2 detoxifying and anti-
oxidant enzymes, particularly the HO-1 [38-40]. HO-1 is a
stress-responsive enzyme, responsible for the breakdown
of heme to biliverdin, free iron and carbon monoxide
[36,41]. It is induced by a variety of cellular stresses,
Table 2 The effect of melatonin administration on morpholog
kidneys in rats (n = 10)

Groups

Changes Control Melaton

Vaculation - -

Interstitial edema - -

Tubular brush border loss - -

Tubular necrosis - -

Tubular atrophy - -

Interstitial inflammation - -

−, none; +, mild damage; ++, moderate damage; and +++, severe damage are sem
according to method of Ross et al. (1989).
including heme, hyperoxia, hypoxia, and electrophiles
[36,39]. Beni et al., (2004) reported that the activation of
transcription factor Nrf2 influenced by the cell redox,
which acts as a sensor of electrophiles and prooxidant
stressors [42]. Oxidative stress and inflammation are two
of the most critical factors implicated in cisplatin-induced
nephrotoxicity. While Nrf2 upregulates the expression of a
number of antioxidant proteins, role of ROS in inflamma-
tion via the activation of NF-kB has been investigated in
cisplatin-induced renal injury [43]. Recent studies have
shown the interaction between nuclear Nrf2 and NF-κB
signaling [24,36]. The studies also report that Nrf2-
ical changes as assessed by histological analysis of

in Cisplatine Melatonin + Cisplatine

++ +

+ -

+ +/−

++ +

+ +/−

+++ +/−

iquantitative scores given by a pathologist unaware of the type of treatment
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deficient mice display increased NF-κB activation in re-
sponse to lipopolysaccharides [44]. Furthermore, disrup-
tion of Nrf2 enhances the upregulation of NF-κB and
proinflammatory cytokines in the brain after traumatic
brain injury [36,45]. Cisplatin treatment showed an inverse
correlation between the two transcriptions factors, which is
in agreement with previous studies.
Melatonin (N-acetyl 5-methoxytryptamine) and its meta-

bolites have been shown to enforce the antioxidant system
by scavenging free radicals [21,46]. Melatonin stimulates
synthesis of antioxidant enzymes [47] and increases the ac-
tivities of other antioxidants [48,49]. Furthermore, mela-
tonin protects antioxidative enzymes from oxidative
damage [50]. Wang et al., (2009) previously showed that
melatonin was effective in preventing cardiopulmonary by-
pass-induced renal damage probably through its antioxi-
dant function and upregulation of HO-1 [51]. The indole,
melatonin, is well tolerated, has a low interaction potential
with other medications and in some cases may even reduce
the side effects of synthetic drugs because of its free-radical
scavenging properties [52]. We and others have previously
shown that melatonin, which based on its small molecular
size and high lipophilicity, possesses excellent bio-
logical membrane permeability and minimal side
effects in humans [18,23,53], reduces brain injury in mouse
[23,54-56] and rat [57,58] models of ischemic stroke.
Melatonin as an antioxidant has been investigated in

various animal models such as age related neurodegenera-
tion [59], in traumatic brain injury [44], left ventricular
hypertrophy [60] and antibiotic-induced nephrotoxicity
such as anthracyclin antibiotics, and gentamicin [61,62]
and in different nephrotoxic models [63,64]. In the last
decade, in various models of acute and chronic tissue in-
jury and oxidative stress, it has been shown that the main
mechanism for melatonin’s protective effect is its action
through indirect (transcriptional) effects. It has been re-
cently shown that the melatonin-derived protection of
heart damage caused by acute exercise in rats is associated
with the NF-κB dependent control of inflammatory and
pro-oxidant pathways [65,66]. In a model of acute renal
damage in rats, melatonin was found to improve markers
of oxidative stress by increased expression of the antioxi-
dant and detoxification enzyme HO-1 [50] or by inhib-
ition of the inducible form of NOS and also of p38 MAPK
and NF-κB activation [67].
Beni et al. (2004) reported that AP-1 transcription factor

inhibition by melatonin played an important role in the
late protection response to traumatic brain injury [42].
Hepatoprotective effects of melatonin were demonstrated
in rats after acute intoxication with dimethylnitrosamine,
which provides further support to a role for melatonin as
a secondary antioxidant and detoxification agent [66]. The
mechanism seems to be related to negative modulation of
NF-κB -dependent genes activated in response to stress.
Conclusion
In conclusion, the present study was carried out to in-
vestigate the expressions of Nrf2, HO-1 NFκB and AP1
after a single cisplatin injection in rats. We evaluated the
possible prevention of cisplatin-induced oxidative stress
in the kidney with melatonin administration. Here, we
report that melatonin attenuates cisplatin-induced
nephrotoxicity in rats by modulating Nrf2/HO-1 signal-
ing. Expressions of NF-κB p65 and AP-1 were increased
significantly in the kidneys of rats treated with cisplatin
compared with the expression in the kidneys from the
control, melatonin-only-treated and melatonin co-
treated rats. Nrf2/HO-1 signaling pathway upregulates
the expression of a number of antioxidant genes in re-
sponse to a wide array of stimuli, and protects the cell
against oxidative stress and inflammation [39]. The
results of this study indicate a possible association be-
tween Nrf2/HO-1 antioxidative stress signaling and mel-
atonin’s nephroprotective effect.
These data may have research hints at therapeutic uses

for melatonin. Melatonin may be beneficial in the pre-
vention of cisplatin-induced nephrotoxicity. However,
additional clinical studies are needed to evaluate the role
of preventive melatonin treatment in humans. The
mechanisms of melatonin’s effect in terms of Nrf2/HO-1
regulation including some other transcription factors
could be further investigated.
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