378MO EMPOWER-Lung 1: Phase III first-line (1L) cemiplimab monotherapy vs platinum-doublet chemotherapy (chemo) in advanced non-small cell lung cancer (NSCLC) with programmed cell death-ligand 1 (PD-L1) ≥50%

<u>A. Sezer</u>¹, S. Kilickap², M. Gümüş³, I. Bondarenko⁴, M. Özgüroğlu⁵, M. Gogishvili⁶, H.M. Turk⁷, İ. Çiçin⁸, D. Bentsion⁹, O. Gladkov¹⁰, P. Clingan¹¹, V. Sriuranpong¹², N. Rizvi¹³, S. Li¹⁴, S. Lee¹⁴, G. Gullo¹⁵, I. Lowy¹⁵, P. Rietschel¹⁵

¹Department of Medical Oncology, Başkent University, Adana, Turkey; ²Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey; ³Department of Medical Oncology, School of Medicine, Istanbul Medeniyet University, Istanbul, Jurkey; ⁴Department of Oncology and Medical Radiology, Dnipropetrovsk Medical Academy, Dnipro, Ukraine; ⁵Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey; ⁶High Technology Medical Centre, University Clinic Ltd., Tbilisi, Georgia; ⁷Department of Medical Oncology, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey; ⁸Department of Medical Oncology, Trakya University, Edirne, Turkey; ⁹Radiotherapy Department, Sverdlovsk Regional Oncology Centre, Sverdlovsk, Russian Federation; ¹⁰LLC, "EVIMED", Chelyabinsk, Russian Federation; ¹¹Southern Medical Day Care Centre and Illawarra Health and Medical Research Institute, University of Wollongong/Illawarra Cancer Centre, Wollongong Hospital, Wollongong, Australia; ¹²Division of Medical Oncology, Columbia University Medical Center, New York, NY, USA; ¹⁴Clinical Sciences, Regeneron Pharmaceuticals, Inc., Basking Ridge, NJ, USA; ¹⁵Clinical Sciences, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA

Background: EMPOWER-Lung 1 is a multicentre, open-label, global, phase III study of cemiplimab, an anti–PD-1, in patients (pts) with treatment-naïve stage IIIB, IIIC or IV squamous or non-squamous NSCLC with PD-L1 expressed in >50% of tumour cells.

Methods: Pts were randomised 1:1 to receive cemiplimab 350 mg Q3W IV or investigator's choice of chemo. Crossover (CO) from chemo to cemiplimab was allowed following progression. The primary endpoints were overall survival (OS) and progression-free survival (PFS) per blinded Independent Review Committee. A prespecified interim analysis was performed after 50% of OS events. Data are presented per intention-to-treat (ITT) and in a PD-L1 \geq 50% ITT population which comprised only pts with PD-L1 \geq 50% by 22C3 per instruction for use (after recommended retesting in some pts). Data cut-off was 1 March 2020.

Results: In the ITT population (median follow-up: 13.1 months), median OS was 22.1 months (95% CI: 17.7—not evaluable [NE]) with cemiplimab (n=356) vs 14.3 months (95% CI: 11.7—19.2) with chemo (n=354; HR, 0.68; 95% CI: 0.53—0.87; P=_0.002). Median PFS was 6.2 months (95% CI: 4.5—8.3) with cemiplimab vs 5.6 months (95% CI: 4.5—6.1) with chemo (HR, 0.59; 95% CI: 0.49—0.72; P<0.0001). In the PD-L1 \geq 50% ITT population (median follow-up: 10.8 months), median OS was not reached (95% CI: 17.9—NE) with cemiplimab (n=283) vs 14.2 months (95% CI: 11.2—17.5) with chemo (n=280; HR, 0.57; 95% CI: 0.42—0.77; P=0.0002). Median PFS was 8.2 months (95% CI: 6.1—8.8) with cemiplimab vs 5.7 months (95% CI: 4.5—6.2) with chemo (HR, 0.54; 95% CI: 0.43—0.68; P<0.0001). CO rate to cemiplimab was 73.9%. In the ITT population, cemiplimab was associated with higher response rate (36.5% vs 20.6%), longer median duration of response (21.0 months vs 6.0 months) and lower rates of Grade \geq 3 adverse events regardless of attribution (37.2% vs 48.5%) compared to chemo.

Conclusions: In this study, 1L cemiplimab monotherapy significantly improved OS and PFS vs chemo in pts with advanced NSCLC with PD-L1 \geq 50%, despite high CO rate, providing rationale for cemiplimab as a new treatment option for this patient population.

Clinical trial identification: NCT03088540.

Editorial acknowledgement: Medical writing support was provided by Emmanuel Ogunnowo, PhD of Prime, Knutsford, UK, funded by Regeneron Pharmaceuticals, Inc., and Sanofi.

Legal entity responsible for the study: Regeneron Pharmaceuticals, Inc. and Sanofi.

Funding: Regeneron Pharmaceuticals, Inc. and Sanofi.

Disclosure: A. Sezer: Research grant/Funding (institution), outside the submitted work: Roche; Research grant/Funding (institution), outside the submitted work: Merck Sharp & Dohme; Research grant/Funding (institution), outside the submitted work: Merck Serono; Research grant/Funding (institution), outside the submitted work: AstraZeneca; Research grant/Funding (institution), outside the submitted work: Lily; Research grant/Funding (institution), outside the submitted work: Novartis; Research grant/Funding (institution), outside the submitted work: JohnsonJohnson; Research grant/Funding (institution), outside the submitted work: Regeneron Pharmaceuticals, Inc.; Research grant/Funding (institution), outside the submitted work: Sanofi. M. Gümüş: Honoraria (institution), outside the submitted work: Roche: Honoraria (institution), outside the submitted work: Merck Sharp & Dohme; Honoraria (institution), outside the submitted work: Gen İlaç; Honoraria (institution), outside the submitted work: Novartis. N. Rizvi: Advisory/Consultancy, outside the submitted work: AbbVie; Advisory/Consultancy, outside the submitted work: Apricity; Advisory/Consultancy, outside the submitted work: AstraZeneca; Advisory/Consultancy, outside the submitted work: Boehringer; Advisory/Consultancy, outside the submitted work: Calithera; Advisory/Consultancy, outside the submitted work: Dracen; Advisory/Consultancy, outside the submitted work: Editas; Advisory/Consultancy, outside the submitted work: EMD Sorono; Advisory/Consultancy, outside the submitted work: G1 Therapeutics; Advisory/Consultancy, outside the submitted work: Genentech, Gilead and GSK; Advisory/Consultancy, outside the submitted work: Illumina; Advisory/Consultancy, outside the submitted work: Lilly, Advisory/Consultancy, outside the sub-mitted work: Merck; Advisory/Consultancy, outside the submitted work: Neogenomics; Advisory/ Consultancy, outside the submitted work: Novartis; Advisory/Consultancy, Shareholder/Stockholder/ Stock options, outside the submitted work: Brooklyn ImmunoTherapeutics; Advisory/Consultancy, outside the submitted work: Takeda; Advisory/Consultancy, Shareholder/Stockholder/Stock options,

outside the submitted work: Bellicum; Shareholder/Stockholder/Stock options, outside the submitted work: Gritstone; Licensing/Royalties, Patent (pending) filed by MSKCC, in the form of royalties, on "determinants of cancer response to immunotherapy, (PCT/US2015/062208)" licensed to Personal Genome Diagnostics: MSKCC. S. Li; S. Lee; G. Gullo: Shareholder/Stockholder/Stock options, Full/Part-time employment: Regeneron Pharmaceuticals, Inc. I. Lowy; P. Rietschel: Shareholder/ Stockholder/Stock options, Licensing/Royalties, Full/Part-time employment: Regeneron Pharmaceuticals, Inc. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.10.372

379MO Durvalumab (D) ± tremelimumab (T) + platinum-etoposide (EP) in 1L ES-SCLC: Characterization of long-term clinical benefit and tumour mutational burden (TMB) in CASPIAN

<u>J.H. Ji¹</u>, J.W. Goldman², M.C. Garassino³, Y. Chen⁴, N. Reinmuth⁵, K. Hotta⁶, A. Poltoratskiy⁷, D. Trukhin⁸, M.J. Hochmair⁹, M. Özgüroğlu¹⁰, G. Statsenko¹¹, O. Voitko¹², N.V. Conev¹³, I. Bondarenko¹⁴, S. Spencer¹⁵, M. Xie¹⁶, S. Jones¹⁵, A. Franks¹⁷, Y. Shrestha¹⁸, L. Paz-Ares¹⁹

¹Medical Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea; ²Medicine, Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ³Thoracic Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ⁴Medical Oncology, Cancer & Hematology Centers of Western Michigan, Grand Rapids, MI, USA; ⁵Thoracic Oncology Department, Asklepios Lung Clinic, Munich-Gauting, Germany; ⁶Medicine and Dentistry, Okayama University Hospital, Okayama, Japan; ⁷Department for Pre-Clinical and Clinical Trials, Petrov Research Institute of Oncology, St. Petersburg, Russian Federation; ³Medical Oncology, Odessa Regional Oncological Dispensary, Odessa, Ukraine; ⁹Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria; ¹⁰Department of Internal Medicine, Istanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, Istanbul, Turkey; ¹¹Medical Oncology, Omsk Regional Cancer Center, Omsk, Russian Federation; ¹²Medical Oncology, Kyiv City Clinical Oncological Centre, Kiev, ³Medical Oncology, Clinic of Medical Oncology, UMHAT St. Marina, Varna, Ukraine: Ukraine; ¹⁴Medical Oncology, Clinic of Medical Radiology Department, Dnipropetrovsk
Medical Academy, Dnipro, Ukraine; ¹⁵Medical Oncology, AstraZeneca, Cambridge, UK;
¹⁶Medical Oncology, AstraZeneca, Boston, MA, USA; ¹⁷Global Medical Affairs Department, AstraZeneca, Gaithersburg, MD, USA; ¹⁸Translational Medicine, AstraZeneca, Gaithersburg, MD, USA; ¹⁹Medical Oncology Department, Hospital Universitario 12 de Octubre, H120-CNIO Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Snain

Background: In the phase III CASPIAN trial, 1L D+EP significantly improved OS vs EP (HR 0.73 [95% CI 0.59–0.91; p=0.0047]) in pts with ES-SCLC, with sustained benefit after >2 yr median follow-up (HR 0.75 [95% CI 0.62–0.91; nominal p=0.0032]). Landmark analyses indicated 22% of pts were alive at 24m with the addition of D \pm T to EP. Here we assess the clinical characteristics and outcomes of pts deriving long-term benefit, as well as the relationship between TMB and efficacy outcomes in the ITT population.

Methods: 805 pts with ES-SCLC were randomised 1:1:1 to D+EP, D+T+EP, or EP. Exploratory subgroup analyses defined long-term clinical benefit as PFS \geq 12m. Turnour tissue was mandated at screening, if available. TMB was assessed in tissue (tTMB) using the FoundationOne CDx platform.

Results: 45 (17%), 42 (16%), and 12 (5%) pts treated with D+EP, D+T+EP, and EP had PFS \geq 12m, respectively (data cutoff 27 Jan 2020). In all arms, the PFS \geq 12m subgroup had a higher incidence of favorable prognostic factors (more women and pts with PS 0, fewer pts with brain/liver metastases). In the D+EP arm, pts with PFS \geq 12m received more D (median 25 vs 7 cycles) and had improved ORR (96% vs 63%), median DoR (NR vs 4m) and OS at 24m (77% vs 11%) compared with the PFS <12m subgroup (Table). Similar results were observed with EP and when both IO arms were combined. Safety and additional efficacy outcomes in the subgroups will be presented. Across all 3 arms, 283 pts (35% of ITT) were evaluable for tTMB. tTMB was not predictive of a differential treatment effect for D \pm T+EP vs EP (OS, PFS, or ORR).

Table: 379MO				
	D+EP		IO arms combined	
	$PFS \ge 12m$ n=45	$\begin{array}{l} PFS <\!\!12m \\ n{=}220 \end{array}$	$PFS \ge 12m$ n=87	PFS < 12m n=444
Ongoing durvalumab at DCO, n (%)	27 (60)	5 (2)	50 (57)	12 (3)
Durvalumab cycles, median (range)	25 (6—37)	7 (1—28)	25 (2—37)	6 (1—33)
Male, %	60	73	63	75
Never / ever smoker, %	9 / 91	8 / 92	9 / 91	7 / 93
PS 0 / 1, %	47 / 53	35 / 65	48 / 52	36 / 64
Brain mets, %	7	11	3	14
Liver mets, %	20	44	23	46
ORR, n/N (%)	43/45 (96)	139/220 (63)	82/87 (94)	256/443 (58)
Median DoR, m (95% CI)	NR (18-NE)	4 (3.5-5)	NR (24-NE)	4 (4-5)
OS at 24m, % (95% CI)	77 (61-87)	11 (7—16)	82 (72-89)	11 (8-14)